SAIP2012

Contribution ID: 321

Type: Poster Presentation

Energy transfer from Ce³⁺ to Tb³⁺ in low quartz and amorphous SiO₂ hosts

Thursday, 12 July 2012 17:30 (2 hours)

Abstract content
 (Max 300 words)

Low quartz and amorphous Ce³⁺-Tb³⁺ co-activated SiO₂ phosphors were synthesized by a solution combustion using urea as a fuel. The objective of this study was to compare the efficiency of energy transfer form Ce³⁺ to Tb³⁺ in low quartz and amorphous SiO₂ hosts. The phosphors were annealed in a reducing atmosphere of 4%H2/96% Ar mixture at an elevated temperature of 1000 deg;C for 2 hours. This was meant to reduce incidental presence of Ce⁴⁺ (non-luminescent) to a fully homogeneous distribution of Ce³⁺ ions in silica matrix. As confirmed by X-ray diffraction (XRD) data, SiO₂ was produced as either low quartz or amorphous phase. The photoluminescence (PL) data showed that green emission of Tb³⁺ at 543 nm was sensitized by Ce³⁺, i.e. there was energy transfer from Ce³⁺ to Tb³⁺ ions. Possible mechanism of UV down-converted green emission due to energy transfer from Ce³⁺ is discussed.

Apply to be
 consider for a student
 award (Yes / No)?

Yes

Level for award
%nbsp;(Hons, MSc,
 PhD)?

PhD

Main supervisor (name and email)
and his / her institution

Prof O.M. Ntwaeaborwa, ntwaeab@ufs.ac.za, University of the Free State

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Primary author: Mr TSHABALALA, Kamohelo George (University of the Free State)

Co-authors: Prof. SWART, Hendrik (University of the Free State); Prof. NTWAEABORWA, Martin (University of the Free State)

Presenter: Mr TSHABALALA, Kamohelo George (University of the Free State)

Session Classification: Poster Session

Track Classification: Track A - Division for Condensed Matter Physics and Materials