

Contribution ID: 84

Type: Oral Presentation

Analytical techniques for noise filtering in quantum logic gates

Wednesday, 11 July 2012 08:00 (20 minutes)

Abstract content
 (Max 300 words)

Describing quantum logic operations in the presence of time-dependent, noisy environments pose significant theoretical challenges. Here we use effective Hamiltonian theory as an efficient means of modelling non-commuting control operations perturbed by classical noise sources. The method allows calculation of the ensemble averaged fidelity of a control operation to arbitrary order in terms of a filter function. In particular we study the performance of dynamically corrected gates as predicted by the effective theory, and compare with brute-force numerical calculations.

Apply to be
br> consider for a student
 award (Yes / No)?

No

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Primary author: Mr GREEN, Todd (Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Australia)

Co-authors: Dr UYS, Hermann (National Laser Centre, CSIR); Dr BIERCUK, Michael (Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Australia)

Presenter: Dr UYS, Hermann (National Laser Centre, CSIR)

Session Classification: Theoretical

Track Classification: Track G - Theoretical and Computational Physics