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Abstract

The scattering tensors are of great importance in the interpretation of
Raman scattering spectra. Using Birman’s method we have calculated
the Clebsch-Gordan coefficients (CGC’s) for the first-order Raman scat-
tering tensors in Si and Ge with O7

h symmetry. The matrix elements of
the scattering tensors are the linear combinations of the CGC’s.

1 Introduction

The study of scattering processes involving phonons provides valuable
informations about various properties in semiconductors. In these mate-
rials the collective excitations are lattice vibrations, such as optical and
acoustic phonons. Si and Ge are semiconductors of space group sym-
metry O7

h with relative small energy gap (Eg ≃ 1.11 eV for Si and Eg

≃ 0.67eV for Ge) and easily doped with resulting changes of electron
density. The plasmas waves in the electron gas interact with incident
light coupling phonons and plasmons. Scattering processes can occur at
high symmetry points due to the interaction of carriers with phonons,
impurities and so on. Lax and Hopfield [1] and Birman et al [2] have
established the selection rules for direct and indirect transitions in Si
and Ge. Away from the Brilloiun zone center the phonons participating
in the Raman scattering processes are second order and are related to
first-order Raman scattering processes. Only excitations having definite
symmetry are allowed to participate in the first order Raman scattering
[3]. The aim of this work is to calculate the CGC’s for the first-order
Raman scattering tensors for interaction involving photons with quasi-
particles (one-phonon excitations) in Si and Ge. The organization of
the paper is as follows. The first section introduces the paper with an
overview of the interaction between the incident light and the phonons
resulting in the scattering processes in materials. In the second section
we give a summary of the theory of Raman scattering tensors enhanced
by the calculations. In section three we present the results of the first-
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order Raman scattering tensors arising from our calculations CGC’s. We
conclude the paper with a brief summary followed by the reference.

2 The summary of the theory of Raman scattering tensors

The states of quasiparticles such as phonons, plasmons, polarons, po-
laritons, excitons etc... are classified according to irreducible representa-
tions (irreps) of the space symmetry group. The interactions of particles
and/or quasiparticles are represented by the Kronecker product (KP)
of irreducible representations of the corresponding factor group (Gk

0)/T .
The CGC’s are matrix elements that diagonalize the KP of relevant ir-
reps involved in the scattering processes.
The symmetry of a photon state is Γ4− with this labelling taken from [4].
The KP of phonons states should contain the symmetry of the perturbing
agent. At k = 0 the long-wavelength , the modes originating from the
zone center are of Γ symmetry . In Si and Ge the vector representation
is Γ4−. For Raman scattering the allowed phonons are contained in the
symmetrized square of the Kronecker product of vector representation.

[Γ4− ⊗ Γ4−]2
∼= Γ1+ + Γ3+ + Γ5+ (1)

The CGC’s U matrix brings the above KP to the blocks diagonal form:

U−1 [Γ4− ⊗ Γ4−]2 U = Γ1+ + Γ3+ + Γ5+ (2)

If the unit polarization vector of the incident radiation is denoted ε̂1 with
Cartesian coordinates ε1β(β = x,y,z) and the unit polarization vector of
the scattered radiation is denoted ε̂2 with Cartesian coordinates ε2α (α
= x,y,z), the intensity of the scattered light polarized in the direction α

for incident light polarized in the direction β is [5]:

C|ε2αPαβε1β|2 (3)

where Pαβ is the scattering tensor see Eq.(4) as well, and C are the
constants. The Raman scattering tensor operator is expanded in terms
of the normal coordinates of the lattice Qj

σ. The coefficients of the linear
terms in the expansion Qj

σ in Eq.(4) correspond to one-phonon scattering,
in other words, the first-order Raman scattering tensor [5].

Pαβ(R⃗) = P
(0)
αβ (R⃗

0) +
∑
jσ

P
(1)
αβ (R⃗

0; jσ)Qj
σ + ... (4)
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where the jσ indices are used to specify the symmetry species of phonon.
The U matrix is obtained from [6]:

U
Γ4−Γ4−,l

′′

aa′,a′′ U
Γ4−Γ4−,l

′′∗
āā′ā′′ = (5)

dim(l′′)

2g

∑
R

[(Γ4−)aa′(Γ4−)āā′+

+ (Γ4−)āa′(Γ4−)aā′] .Γ
l′′∗
a′′ā′′

where the irreps l′′ are Γ1+,Γ3+,Γ5+.

3 Results and discussion

The mathematical theory of CGC’s has been developed by Berenson and
Birman [7] who calculated the CGC’s for Diamond (O7

h) and rocksalt
(O5

h)[8], Kunert and Suffczynski [9, 10] developed the theory of the CGC’s
related to the wave vector selection rules in terms of block structures. The
Raman scattering tensors in cubic Cu2O (O4

h) were analysed by Birman
[11], Kunert et al. computed the CGC’s for scattering tensors in ZnO
and other wurtzite semiconductors [14]. Finally, Berenson [13] discussed
the scattering tensors for crystals limited to the point groups Td and C6v.
However, the first-order Raman scattering tensors for Si and Ge space
groups have not been studied up to now.
In this paper, we have used the Eq.(5) to calculate and tabulate the
CGC’s for first-order Raman scattering tensors. Using these CGC’s for
symmetrized square of vector representation Γ4− of Si and Ge space
groups, we have constructed the first-order Raman scattering tensors
in the form:

Pαβ(Γ) =

xx xy xz
yx yy yz
zx zy zz

 (6)

The elements of the First-order Raman scattering tensors are compa-
rable to the values found in the literature[12]. The elements of the first-
Raman scattering tensors for Γ3 tabulated by Loudon for point groups
don’t contain the phases w = −1

2 + i
√
3
2 and w∗. In our case, the space

groups studied contain the phases at Γ point resulting in presence of the
phases for the first-order Raman scattering tensor for Γ3 irrep.

From our table, we have derived the first-order Raman scattering ten-
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Table 1: The CGC’s for the U matrix: a = 1√
2
, b = 1√

3
, and w = − 1

2
+ i

√
3

2
.

[Γ4− ⊗ Γ4−]2 ∼= Γ1+ + Γ3+ + Γ5+

xx b b b 0 0 0

xy 0 0 0 0 0 a

xz 0 0 0 0 a 0

yx 0 0 0 0 0 a

yy b w∗ b wb 0 0 0

yz 0 0 0 a 0 0

zx 0 0 0 0 a 0

zy 0 0 0 a 0 0

zz b wb w∗ b 0 0 0

sors resulting from the linear combinations of CGC’s tabulated.

Pαβ(Γ1+) =

b 0 0
0 b 0
0 0 b

 , Pαβ(Γ
1
3+) =

b 0 0
0 w∗b 0
0 0 wb

 , Pαβ(Γ
2
3+) =

b 0 0
0 wb 0
0 0 w∗b

 ,

Pαβ(Γ
1
5+) =

0 0 0
0 0 a
0 a 0

 , Pαβ(Γ
2
5+) =

0 0 a

0 0 0
a 0 0

 , Pαβ(Γ
3
5+) =

0 a 0
a 0 0
0 0 0


4 Conclusion

In summary, we have calculated the CGC’s matrix elements of [Γ4⊗Γ4]2
for Si and Ge. We have studied the first-order Raman scattering tensors
in Si and Ge by means of CGC’s. The CGC’s are also used to estimate
the energy of the scattering tensor [14]. The linear combinations of these
elements of the first-Raman scattering tensors are the elements of the
Brillouin zone scattering not discussed here. The one-phonon involved in
these scattering processes are determined by irreps contained in KP.
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