Inferring the presence of nearby sources of cosmic rays by method of galactic propagation modelling

D. Bisschoff I. Büsching and M.S. Potgieter

Goal of this Study

- Search for signatures of local sources of cosmic rays (CRs)
- Numerical modelling of CR propagation through the galaxy
- Separate comparison of primary and secondary CRs to observational data

Motivation

- CRs are accelerated at point-like sources (SN + SNR)
- Primary CRs depend on local sources
- Secondary CRs don't depend on local sources
- 2D CR propagation models can't include the local source history but should describe secondary CRs well

Cosmic Rays in the Galaxy

Cosmic rays:

- Fully charged energetic particles
- Originate in discrete sources in the Galaxy
- Propagate through the galactic interstellar medium (ISM)

Primary CRs:

 CRs accelerated in sources of high energy particles, such as SNR in the Galaxy, are referred to as Primary CRs

Secondary CRs:

 CRs resulting from the fragmentation of the Primary CRs during propagation through the ISM are referred to as Secondary CRs

Galactic CR Propagation
Equation

$$\frac{\partial N}{\partial t} = S + \nabla \cdot (K_x \nabla N - VN) + \frac{\partial}{\partial p} \left(p^2 K_p \frac{\partial}{\partial p} \left(\frac{N}{p^2} \right) + \frac{p}{3} (\nabla \cdot V) N - \dot{p} N \right) - \frac{N}{\tau}$$

CR Sources: *S*(*r*,*p*,*t*)

Particle loss: N/τ

Spatial diffusion: $\nabla \cdot (K_x \nabla N)$ Convection: $\nabla \cdot (VN)$

Momentum diffusion:

$$\frac{\partial}{\partial p} \left(p^2 K_p \frac{\partial}{\partial p} \left(\frac{N}{p^2} \right) \right)$$

Adiabatic cooling:

$$\frac{\partial}{\partial p} \left(\frac{p}{3} (\nabla \cdot \mathbf{V}) N \right)$$

Momentum loss: $\frac{\partial}{\partial p}(\dot{p}N)$

The GALPROP Numerical Model

- <u>GAL</u>actic <u>PROP</u>agation code
- Developed by A. Strong & I.V. Moskalenko
 - » http://galprop.stanford.edu/
- Calculates propagation of CRs through the Galaxy
- Capable of using realistic astrophysical input
- Latest theoretical developments

• 2D and 3D implementations

- 2D space + momentum
- Grid spacing:

dz = 0.1 kpcdr = 1 kpc

- Solar system at 8.5 kpc
- Sources in Galactic plane

Parameter Study

• The source spectral index: α

 $Q(p) \propto p^{\alpha}$

- The spectral index of the diffusion coefficient: δ
- The magnitude of the diffusion coefficient at a particle rigidity of 4 GV: k_0

$$k_{x} = \delta k_{0} \left(\frac{\rho}{\rho_{0}}\right)^{\delta}$$

Parameter Study

• Parameter space: k_0 , δ , α

Parameter	Min	Max	Units
k_0	0.5	5.0	$10^{28} \text{ cm}^2 \text{s}^{-1}$
δ	0.1	1.0	
α	1.50	3.50	

- Plain diffusion model
- Model runs in parallel using MPI on cluster computer

• χ^2 test comparing

spectra to data above 4 GeV

 Database maintained by Strong & Moskalenko http://www.mpe.mpg.de/~aws/propagate.html

Primary CRs vs Secondary CRs

- Restricted by experimental data
- Split data between Primary and Secondary
- Giving 3 CR component groups: Primary, Mixed and Secondary

% of Secondary CR fraction	
< 30 %	
> 30 %, < 70 %	
> 70 %	

Primary	Mixed	Secondary	
Н	Ν	Be	
He	C+N+O	В	
С	Ne	F	
0	Na	Р	
Mg	Al	Sc	
Si	S	Ti	
Ne+Mg+Si	Cl	V	
Ca	K	Mn	
Fe	Cr		
	Со		

Results

• Best fit models and parameter values found:

Parameter	Primary	Mixed	Secondary	Units
k_0	2.868	1.022	1.928	$10^{28} \text{ cm}^2 \text{s}^{-1}$
δ	0.100	0.100	0.767	
α	2.661	2.661	2.210	

• Contours of minimum χ^2 also differ between Primaries and Secondaries

Conclusions

- Separately modelling Primaries and Secondaries
- Components favour different best fit values
- Different sensitivities to model parameters
- Secondaries show in total better fits to the data

This suggests that the Primary CR distribution does indeed vary in time and space depending on the local source history

