

Contribution ID: 156

Type: Oral Presentation

First principle stability study of FePO₄ and LiFePO₄ polymorphs

Tuesday, 10 July 2012 14:30 (20 minutes)

Abstract content
 (Max 300 words)

Lithium iron phosphate, LiFePO₄ has been under intense study as a future cathode material for lithium ion batteries, due to its good thermal stability, competitive electrochemical properties, high safety, low cost, and long life cycle; and it has been recently commercialized in power tool applications. The electrochemical charge/discharge potential profile of Li/LiFePO₄ cells is very flat and located at 3.45V vs. Li/Li+, moreover, its theoretical capacity is relatively high (170 mAh/g). We use first principle calculations to investigate the structural, electronic and mechanical properties of FePO₄ and LiFePO₄ employing the pseudo-potential plane-wave within the local density approximation. We also determine the effect of lithiation on FePO₄ polymorphs. Our results show that β -FePO₄ and HP-FePO₄ shows stability over α -FePO₄, while lithiation stabilises FePO₄ polymorphs.

Apply to be < br > consider for a student < br > award (Yes / No)?

YES

Level for award

- (Hons, MSc,

- PhD)?

MSc

Main supervisor (name and email)

-br>and his / her institution

PHUTI NGOEPE, PHUTI.NGOEPE@L.AC.ZA, UNIVERSITY OF LIMPOPO

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

NO

Primary author: Mr LETHOLE, NDANDULENI LESLEY (SAIP)

Presenter: Mr LETHOLE, NDANDULENI LESLEY (SAIP)

Session Classification: DCMPM1

Track Classification: Track A - Division for Condensed Matter Physics and Materials