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1. Abstract 

System stability is a fundamental concept in understanding nature. In other words, 

one must be able to determine if a system of particles in a specific scenario can 

exist indefinitely, or if some sort of decay will take place. This can provide 

information on, among others, nuclear and chemical reactions, nuclear decay, and 

specifically particle scattering.  

In this paper, resonant and bound state energies for a system of particles with a 

given step-potential are calculated by making use of the Jost equations for the 

system. By varying the equivalent mass, radii and potential magnitudes, the energy 

of the system is affected, thus the state of the system is also affected: this 

relationship between the potential variables and the state of the system is 

thoroughly researched for the specific potential.  

It is discovered that an increase in the equivalent mass of the system results in a 

proportional increase in bound states and in bound state energies, as well as a 

decrease in resonant state energies and resonance state widths.  

Potential depth and sharpness also affect the number of bound states, where 

greater values of an attractive potential results in a proportional increase in bound 

states and a decrease in virtual states. Greater values of a repulsive potential result 

in fewer bound states.   

Where the attractive and repulsive potentials have the same values, there is an 

increase in bound state energies for large values, yet there is no increase in the 

number of bound states. Virtual states exist for small values, but these disappear 

for larger, wider potential peaks. Resonances are of smaller energies and width for 

systems of smaller, narrower potential peaks.     

2. Introduction 

No system with an easily defined step-potential, as we are using, occurs in nature. 

Yet it may be used as a reasonably accurate approximation for certain scenarios. It 

simplifies calculations, and enables us to solve most of the equations pertaining to 

the problem analytically.  

The system will be considered non-relativistically, since most systems involving 

particles at the quantum level belong to this category. 

In this introduction, I will begin by giving a brief overview of the basic principles of 

Quantum Mechanics, specifically introducing Schrödinger’s Equation, from which 

the Jost equations are derived. The possible states in which a system can exist are 

then discussed. The relationship between these states and the Jost equations are of 

specific importance, and it is explained in detail. 
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2.1 The Basics of Quantum Mechanics & Deriving the 
Time-Independent Schrödinger’s Equation 

At a specific time, a system will be in a state that can be described by a full set of 

conserving quantum numbers, like total energy, angular momentum and spin. We 

will denote this set as: 

� � 
α�, α�, … , α�� 
 

(1)  

 In co-ordinate notation, the state can be fully described by the complex-valued 

wave function, ���t, ��. It is dependent on time, the spatial orientation, as well as 

the set of quantum numbers pertaining to the system. The density of states, or the 

probability of finding a particle in a specific configuration at any instant of time, is 

the squared absolute value of the wave function. 

To gain any information about a system, like finding the bound and resonant 

states, it appears that the wave function for the system must be calculated. For no 

better reason than “it just works”, we turn to Schrödinger’s equation to do just 

that: 

 
�ħ ��� ����,  � � ! ����,  � 

 

(2)  

! denotes the Hamiltonian operator. It is comprised of the kinetic energy operator 
(the free motion Hamiltonian) and the potential energy operator (sum of inter-
particle potentials and a potential generated by an external field). The Hamiltonian 

can thus be understood as the total energy operator. The symbol ħ of course 
denotes Planck’s constant.   
 
Schrödinger’s equation determines the state of the system at any time, �, if it is 
known at a specific time � �  �". We will apply the method of separation of variables 
to (2), Schrödinger’s equation, to attempt to get rid of the time dependence. 
Therefore we let: 

 
����,  � � #���$�� � 

 
(3)  

Where #��� is a time dependant function, and $�� � is spatially dependant, as well 

as being dependant on the quantum numbers, denoted by the subscript �. We then 

take the time derivative of (3) and multiply it by a factor �ħ:   
 

  % �ħ ��� ����,  � �  �ħ �#����� $�� � 
 

(4)  

We now substitute (2) into (4): 

 % ! ����,  �  �  �ħ �#����� $�� � 
We also substitute (3) into this expression: 

 %  ! &#���$�� �'  �  �ħ �#����� $�� � (5)  
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We assume that the Hamiltonian operator is time-independent, and that it will thus 

be conserving. This assumption may seem rash, but it hinges on the fact that 

energy cannot be created or destroyed from nothing, and that the total energy of a 

finite system must thus remain constant. No contradictory occurrence has been 

empirically observed. Our assumption is thus justified. Thus: 

! &#���$�� �' � #��� ! $�� � � #���( $�� � � ( #���$�� � 
Where E is the energy eigenvalue corresponding to the ! operator. E can be chosen 

as one of the quantum numbers of the system, since ! is conserving. So we then 

have: 

 
! $�� � � ( $�� � 

 
(6)  

This is the time-independent Schrödinger’s equation, which is of great importance 

later. Returning to the differential equation (5), with (6) taken into account: 

E #���$�� �  �  �ħ �#����� $�� � 
%  E #���  �  �ħ �#�����  

Solving this differential equation yields: 

#���  �  *+, �- �ħ(�� 
 

(7)  

This is the time dependant part of Schrödinger’s equation. When substituting (7) 

into (3), the solution to Schrödinger’s equation becomes: 

 
����,  � � *+, .- �ħ(�/$�� � 

 

(8)  

Note that the application of the method of separation of variables would be 

pointless if the Hamiltonian was not conserving. Thus this is a fundamental 

prerequisite for most problems in Quantum Mechanics.  

All that remains is to calculate the time-independent wave equation by means of 

equation (6), the time-independent Schrödinger’s equation. In future, where the 

wave equation and Schrödinger’s equation is mentioned, assume that the time-

independent wave equation and the time-independent Schrödinger’s equation is 

referred to, unless otherwise stated. 

2.2 Schrödinger’s Equation in Spherical Co-ordinates 

We will be dealing with a radial potential in this scenario, thus it would be wise to 

attempt to convert the time-independent Schrödinger’s equation to a more fitting 

set of co-ordinates. Consider the Hamiltonian, !, comprised of Kinetic Energy 

Operator and Potential Energy: 
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! � 0�2μ 1  
� � 
Where 0 denotes the momentum operator, μ the equivalent mass of the particles 
under consideration, and 
� � the potential. From the definition of 0, the 
Hamiltonian can be written as: 

! � - ħ�2μ2 1 
� � (9)  

With 2 denoting the Laplacian, given, in spherical co-ordinates in terms of the 
angular momentum operator, by: 

2 � 1�� �3����3� - 1ħ��� 4� 
 

(10)  

4 denotes the angular momentum operator (which, by the way, is conserving). 
Substituting (10) into (9) yields: 

! � - ħ�2μ 1�� �3����3� 1 12μ�� 4� 1 
� � 
 

(11)  

When substituting (11) into (6), Schrödinger’s Equation becomes: 

5- ħ�2μ 1�� �3����3� 1 12μ�� 4� 1 
� �6 $�� � � ( $�� � 
 

(12)  

Notice that the potential function is also dependant on the spatial vector. We 
consider a radial step-potential, thus 
 is only dependant on �, the radial distance 
from a point of reference. We now make the following substitutions: 

7� � 2μ(ħ�   
 

(13)  

8��� � 2μħ� 
��� 
 

(14)  

7 is called the momentum of the propagating spherical wave. The reason for these 
substitutions will soon become clear.  

Again using the technique of separation of variables, we can write $�� � as a 
product of a radially dependant function and an angular dependant function. This 
is a simple task, since the well-studied spherical harmonics, denoted by 9:;�<, =�, 
form a complete basis in the subspace of the spherical angles. Thus we can write:  

$�� � � >:����  9:;�<, =� 
 

(15)  

The factor 
�3 is introduced to simplify (12), but it is not necessarily of cardinal 

importance. The sperical harmonics have, among others, the following property: 

 4�9:;�<, =� � ?�? 1 1� ħ�9:;�<, =� 
 

(16)  
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Where ? is the conserving angular momentum eigenvalue, since 4 is conserving. 
The significance and meaning of the other conserving quantum number, @, is not 
discussed here: it is not required in our calculations.  

It should be clear why the spherical harmonics are introduced now: substituting 

(16) into (12) will effectively get rid of the 4A operator. Indeed, 9:;�<, =� is the 
eigenfunction of 4. Thus it will not act on >:���; the subscript ? indicates that the 
function is dependent on ?, though, but this is only through 9:;�<, =�.   
One last remark before attacking (12): The subscript � is tediously included when 
writing $�� �. This is to indicate the wave equation’s dependence on quantum 
numbers as yet unknown, although energy is identified as a quantum number 
early in the calculations. It should be clear from (15) though, that the set of 
quantum numbers sufficient to determine $�� �, for our purposes, at least, is given 
by: � � 
(, ?,@� 
 

(17)  

Now let us substitute (13) – (15) into (12) and apply (16): 

- ħ�2μ 1�� �3 B���3 C>:����  9:;�<, =�DE 1 12μ�� 4� >:����  9:;�<, =� 1 
��� >:����  9:;�<, =�
� ( >:����  9:;�<, =� 

% - 1�� �3 C���3 .>:����  /D9:;�<, =� 1 2μħ� 12μ�� >:���� ?�? 1 1� ħ� 9:;�<, =�
1 2μħ� 
��� >:����  9:;�<, =� � 2μħ� ( >:����  9:;�<, =� 

Note that the spherical harmonics cancel: 

% - 1�� �3 C�� F��3>:��� - >:�����  GD 1 1�� >:���� ?�? 1 1� 1 8��� >:����  � 7�  >:����   
 

% - 1�� �3H��3>:��� - >:���I 1 1�� >:���� ?�? 1 1� 1 8��� >:����  � 7�  >:����   
 

% -H��3�>:��� 1 �3>:��� - �3>:���I 1 >:���� ?�? 1 1� 1 �8���>:���  � �7�>:���  
% -�3�>:��� 1 >:����� ?�? 1 1� 1 8���>:���  � 7�>:���  
% �3�>:���17�>:��� - ?�? 1 1��� >:��� - 8���>:���  � 0  

Thus we finally have: 
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5�3� 1 7� - ?�? 1 1��� - 8���6 >:���  � 0  (18)  

 

This is the radial time-independent Schrödinger’s equation.  

2.3 The Jost Functions 

As per usual with any differential equation, boundary conditions need to be 

imposed to find the final solution. We apply these boundary conditions at the ends 

of the interval, � J &0,∞�; thus at  � � 0 and � K  ∞. Since $�� � must be finite 

everywhere, it is clear from (15) that >:�0� � 0 to prevent $�� � from blowing up to 

infinity. 

At large values of �, we will assume that 8��� tends to zero. To be precise, 8��� need 

only diminish faster than 
�3L, the electrostatic potential, when � K  ∞ for (18) to 

become the “free” radial Schrödinger’s equation: 

5�3� 1 7� - ?�? 1 1��� 6 >:��� � 0;         � K ∞ (19)  

 

The solutions to (19) are either the linearly-independent Riccati-Bessel and Riccati-

Neumann functions, or the pair of linearly-independent Riccati-Hankel functions. 

We will refrain from going into the detail of these functions, since much information 

is available in any Calculus textbook. It is sufficient to accept that they are 

solutions to the problem at hand.  

All these functions behave exponentially. Also, the former can be written in terms 

of the latter, and vice-versa. We choose to work with the Riccati-Hankel functions, 

since one of the pair represents an incoming spherical wave, and the other an 

outgoing spherical wave. With the Riccati-Bessel and Riccati-Neumann functions, 

there is no such distinction. 

The Riccati-Hankel functions are denoted by N:�O��7��, with the - denoting an 

incoming and + denoting an outgoing spherical wave. >:��� is a linear combination 

of these two functions: 

>:��� � P�N:�Q��7�� 1 P� N:�R��7��;      � K ∞ 

With P� and P� constants that are dependant on the total energy. The energy 

determines wether the system is in the bound or resonant state. Thus these 

constants are related to the state of the system. They are, in fact, the Jost 

functions. Since they are functions of the total energy, we can write them as 

follows: 

P� � S:�TU��(� 
P� � S:�VWX��(� 
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This somewhat unorthodox notation simplifies matters considerably: Both depend 

on the total energy, and are thus written as functions of total energy. Also, the 

subscript ? indicates the dependence on the angular momentum. Most importantly, 

the “in” indicates the correspondence of the constant to the incoming spherical 

wave, and the “out” the correspondence of the constant to the outgoing spherical 

wave. The solution is then written as: 

>:��� � S:�TU��(�N:�Q��7�� 1 S:�VWX��(�N:�R��7��;      � K ∞ 

 
(20)  

With the Riccati-Hankel functions given as: 

N:�O��7�� �  Y � *OT�Z3Q:[� �;      � K ∞ 

 

(21)  

Thus we have: 

>:��� � S:�TU��(� � *QT�Z3Q:[� � - S:�VWX��(� � *RT�Z3Q:[� �;      � K ∞ 

 

(22)  

Note that this is only valid if � K ∞. Otherwise, the Riccati-Hankel functions cannot 

be written analytically if a value for l is not specified. 

We now know what the Jost functions are, and we know why they are significant 

since they are related to the state of the system: if it is bound or resonant. We will 

consider each case separately to glean more information from this relationship. 

2.3.1 Bound States   

We understand a bound state as a state in which the particles in the system are 
“fixed”; they cannot escape, or rather, they are bound together (hence the name). A 
typical Classical example is that of planetary orbit: due to the specific energy of the 
system, the Moon will remain in orbit of the Earth. Note that movement is still a 
possibility. Things are very much the same in the quantum scale: Particles cannot 
escape a system if the energy of the system does not allow it. The system is then in 
the Bound state. 
 
Thus, in a bound state, the particle cannot leave the source of the attractive field. 

The probability of finding the particle when � K  ∞ thus tends to zero. This implies 
that the wave function must also tend to zero, which in turn implies that: 
 $�� � K  0      \N*]      � K  ∞ 

 
(23)  

From (15) it is thus clear that: 
 >:��� K 0     \N*]     � K  ∞ 

 
(24)  

Since the total probability of finding the particle somewhere around the source of 
the potential is 1, the fact that >:��� steadily disappears as � K ∞ means that $�� � 
must be square-integrable. This is the case if S:�TU��(� is zero.  
 
Also, since the potential vanishes at large r values, the implication is that the 
energy must be negative. If this is the case, k must be imaginary, as is clear from 
(13):  
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7� � 2μ(ħ�   
% 7� � -2μ|(|ħ�   
% 7 � �_2μ|(|ħ�   

% 7 � �`;       ` a 0  
When substituting this expression in (22):  

>:��� � S:�TU��(� � *QT�Tb3Q:[� � - S:�VWX��(� � *RT�Tb3Q:[� �;      � K ∞ 

% >:��� � S:�TU��(� � *�Rb3R:[T� � - S:�VWX��(� � *�Qb3Q:[T� �;      � K ∞ 

The second term will thus tend to zero, and the first will tend towards infinity. For 

(24) to remain true, S:�TU��(� must be zero, which reaffirms what was established 

earlier. 

The real values for E such that S:�TU��(� � 0 will thus be the values of the total 

energy such that the system is in the bound state. It should be clear that the above 
is only applicable for real values of E, since k would otherwise not necessarily be 
strictly imaginary. Hence the condition: E must be real and negative. 
 
The “old-fashioned” way, shall we say, of determining the bound state energies of a 
system would be to calculate the wave equation, a most tedious venture, and then 
to find the values of E such that it becomes zero as � K ∞. In our method, we 
simply need to calculate the Jost functions. 
 

2.3.2   Resonant States 

Resonance is a phenomenon that presents itself in most branches of physics. Once 

again, a classical example is worthy of consideration: 

When an asteroid approaches a planet, depending on its kinetic energy, trajectory, 

and the gravitational force between it and the planet, it might collide with the 

planet and stick to it, or orbit the planet, which would correspond to a bound state. 

It might also complete a number of revolutions around the planet before moving 

away, or collide and move away – a classical equivalent of a resonant state. The 

more revolutions, the longer the resonance “lives”, as it were. It is similar to the 

bound state, since the resonance will “live” indefinitely in such a state. 

The quantum scenario is very much the same, apart from the obvious fact that 

Newtonian Physics cannot apply. For quantum resonances, particles will form a 

partially localised state, which slowly decays. This is why the terms quasi-bound, 

and quasi-stationary state, are sometimes used to describe them. 



Page | 11  

 

The problem with quantum resonances is that it cannot be defined as rigorously as 

bound states, although there is much similarity between the two states. Our 

definition hinges on the fact that resonances do not “remember” how they are 

formed, implying that there is no preferred direction for decay. Unrest should occur 

when terms such as “remember” is used for a particle, thus an example is given to 

better illustrate what is meant: 

The oxygen isotope cde�f  in the exited state can be formed in a number of ways: A 

photon might have been absorbed by ce�f , or the isotope ce�g  might have captured a 

neutron. In fact, there are a number of possible nuclear reactions. We can consider cde�f  as a resonant state of oxygen, due to its temporary existence; It must decay at 

some stage due to instability. If we consider a sample of cde�f , in other words 

considering an ensemble of such resonant states, the decay is random and in all 

directions, i.e. the decay occurs isotropically. 

We can thus conclude that only the outgoing spherical wave part will be included 

in (22) as � K ∞ and that S:�TU��(� � 0 for this to occur. This condition is identical to 

that of a bound state, hence the similarity between the two states. There is more 

that can be said about resonances, though: 

The decay of an ensemble of resonance states can be modelled by the radioactive 

decay law: 

h��� �  h"*QiħX (25)  

 

Where h��� is the number of states at time t, h" is the number of states initially, 

and j is known as the resonance width, measured in units of energy, and is similar 

to the more familiar concept of the decay constant in radioactive decay. It is also 

positive. h��� must be proportional to the density of states, k���, which is calculated 

from the time-dependant wave-function. Thus we have: 

h"*QiħX �  h��� ~ k �  |����,  �|� � meQTħoX $�� �m� 
% ph"*Q i�ħX  ~  eQTħoX $�� � 

 $�� � will also be of an exponential form, due to the nature of Schrödinger’s 

equation. Also, due to its attenuation, we can thus write: 

 $�� �~ eOTq , r J s 

% *Q i�ħX ~  eQTħoXeOTq 
% - j2ħ � ~  - �ħ(� O �r 

% �ħ(� ~  j2ħ � O �r 
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% (~ - � j2 Y �ħ� �r 

% (~ O ħr� - � j2 
% ( � O(t - � j2 

We can thus conclude that the energy must be complex with a negative imaginary 

part for resonance states. To find these energies, we simply use this information 

together with the fact that S:�TU��(� � 0. The complex values of E with negative 

imaginary part such that the Jost equation becomes zero thus corresponds with 

the resonant states.  

The real part of such a zero point will give the resonant state energy, and the 

imaginary part is related to the resonant width, j, also simply referred to as the 

“width”. Since this is basically the decay constant, the half-life, the time it takes for 

a ensemble of resonant states to decay by half the initial value, can be calculated 

from j with the following: 

u�/� � ħ ln 2j  

The half-life is an indication of how long a resonant state will last before it decays; 

A resonant state with large width will thus not last long, while a resonant state 

with a small width will indeed last long.   

2.4 The Way Forward 

This rather lengthy introduction now enables us to quite easily achieve our goal, 

since we finally have all the tools required to attack the problem. 

I will begin by finding a method to easily calculate the Jost equations. The actual 

system will then be introduced, and I will proceed by using said method to find the 

Jost equations for this system.  

By making use of the mathematical programming software, Maple, the zero points, 

also called the spectral points, of S:�TU��7�, with 7� � �yoħL  (equation (13)), are found. 

The Jost function is quite obviously dependant on (, but equally obviously this 

dependence is through 7. Since 7 is dependant on the square of (, a problem 

arises: spectral points that are purely imaginary in the 7 plane become real in the ( 

plane. There must be a distinction between these values, since the ( values 

corresponding to purely imaginary 7 values do not represent true bound states, but 

states that are dubbed virtual states, since such energies cannot exist in a physical 

sense. This state is only possible for systems where ? � 0, and exist where the 

attraction is small. Where the attraction is stronger, virtual states become bound 

states. 
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Also, resonances may be 

calculated in the ( plane that 

cannot be considered true 

resonances, for the same 

reasons. These values are 

dubbed sub-threshold 

resonances, and can be seen as 

“virtual resonances”, in a way. 

For our purposes, they are not 

important: they do not affect 

scattering, and behave in exactly 

the same way as resonances do. 

If we thus confuse a sub-

threshold resonance with a true 

resonance, no harm is done. In 

the 7 plane, Figure 1 indicates 

where sub-threshold resonances 

would occur.  

 

It is interesting to mention that, although true resonances and even sub-threshold 

resonances have negative imaginary part in the (-plane, each and every point has a 

mirror-image partner point relative to the real axis. Thus complex spectral points 

with positive imaginary parts exist, and correspond exactly with complex spectral 

points with negative imaginary part: both will have the same real value. This can be 

rigorously proven: see reference [1]. This symmetry also occurs in the 7-plane, but 

around the imaginary 7 axis.      
In this paper, I will find the 

spectral points of a system in the 7-plane, and draw conclusions 

from this data. This is to avoid 

confusion with the virtual and 

sub-threshold states that cannot 

be distinguished from true bound 

and resonant states in the ( 

plane. Also, since we are only 

interested in bound and resonant 

state dependence on the variables 

of the system, and not necessarily 

on the actual values of the 

energies, 7-plane spectral points 

are more than suitable. 

In the 7-plane, purely imaginary 

positive spectral points will result 

in negative real points in the ( 
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plane, which corresponds with bound states. Purely imaginary negative spectral 

points in the 7-plane correspond with virtual states.  

Complex spectral points with negative imaginary part and positive real part, as well 

as complex spectral points with positive imaginary part and negative real part, will 

correspond with resonance and sub threshold resonances. Since they have mirror 

images in the other quadrants, all complex spectral points are shown in the data, 

and are all pretty much thought of as resonant states, due to the symmetry. A plot 

of the spectral points for a typical system is shown in Figure 2.    

Another highly important fact is that for a quantum mechanical system, there can 

be infinitely many resonant states, but there is a finite number of bound states. 

This can also be rigorously proven, and once again I refer the reader to reference 

[1]. A system might even have no bound states.  

Using this information, much can be concluded from a set of data. First, we need to 

obtain this data, and we must thus be able to calculate the Jost equations. Of the 

pair, S:�TU��(� appears to be the most useful for our purposes. As will be seen, S:�VWX��(� is of particular use in calculating S:�TU��(�, but after this is done, we do not 

need it any longer. It is of immense importance when considering scattering in a 

quantum mechanical system, and this is why it is also calculated.  

3. Calculations 
3.2 A Method to Calculate the Jost Equations 

The most obvious way to calculate the Jost function would be to solve 

Schrödinger’s equation in the region � K ∞. Yet the whole point of using the Jost 

functions is to refrain from having to do so. Thus we must find an alternative way 

of calculating the Jost functions. Our starting point is equation (18), the radial 

time-independent Schrödinger’s equation:  

5�3� 1 7� - ?�? 1 1��� - 8���6 >:���  � 0 
We will find an alternative way of writing it that is more suitable for our needs. We 

start with the following: 

5�3� 1 7� - ?�? 1 1��� 6 >:���  � 8��� >:��� 
 

(26)  

The left hand side should look very familiar; it corresponds with the “free” redial 

equation, for which the solutions are known. The solution of the above thus takes 

the same form:  

>:��� � z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7�� 
 

(27)  
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Where N:�O��7�� once again represents the Riccati-Hankel functions, with the “+” 

indication the outgoing wave and the “–“ indicating the incoming wave. z:�TU/VWX��(, �� 
represents unknown functions, with the superscript indicating the correspondence 

with the incoming or outgoing wave. Note that for � K ∞, (28) simply becomes the 

known equation (20): 

>:��� � S:�TU��(�N:�Q��7�� 1 S:�VWX��(�N:�R��7��;      � K ∞      
With: 

S:�TU��(�  � lim 3K}z:�TU��(�  (28)  

S:�VWX��(�  � lim 3K}z:�VWX��(�  (29)  

 

If we can thus calculate z:�TU/VWX��(, ��, we can calculate the Jost equations.  We will 

apply the well-known Variation of Parameters method to solve (27), and thus 

introduce the Lagrange condition: 

0 � �3z:�TU��(, ��N:�Q��7�� 1 �3z:�VWX��(, ��N:�R��7�� (30)  

This condition is arbitrary, and is allowed, since z:�TU/VWX��(, �� must be dependent 

on each other in some way. Any condition relating the two equations would suffice, 

but this proves to be the most fruitful. 

Now, take the first derivative of (28):  

�3>:��� � .�3z:�TU��(, ��N:�Q��7�� 1 �3z:�VWX��(, ��N:�R��7��/
1 .z:�TU��(, ���3N:�Q��7�� 1 z:�VWX��(, ���3N:�R��7��/ 

The first term disappears due to the Lagrange condition (31): 

% �3>:��� � z:�TU��(, ���3N:�Q��7�� 1 z:�VWX��(, ���3N:�R��7�� 
The derivative of the above, the second derivative of (28), is then: 

% �3�>:��� � z:�TU��(, ���3�N:�Q��7�� 1 z:�VWX��(, ���3�N:�R��7�� 1 �3z:�TU��(, ���3N:�Q��7��1 �3z:�VWX��(, ���3N:�R��7�� 
Consider (27): 

5�3� 1 7� - ?�? 1 1��� 6 >:���  � 8��� >:��� 
% 5  7� - ?�? 1 1��� 6  >:��� 1�3�>:��� � 8��� >:��� 

Then substitute (28) and the expression for its second derivative into the above:  
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% ~  7� - :�:R��3L - 8���� ~z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7��� 1 ~z:�TU��(, ���3�N:�Q��7�� 1 z:�VWX��(, ���3�N:�R��7�� 1 �3z:�TU��(, ���3N:�Q��7�� 1 �3z:�VWX��(, ���3N:�R��7��� � 8��� >:���   
% 5  7� - ?�? 1 1��� - 8���6 z:�TU��(, ��N:�Q��7�� 1 5  7� - ?�? 1 1��� - 8���6 z:�VWX��(, ��N:�R��7�� 

1 ~z:�TU��(, ���3�N:�Q��7�� 1 z:�VWX��(, ���3�N:�R��7�� 1 �3z:�TU��(, ���3N:�Q��7��1 �3z:�VWX��(, ���3N:�R��7��� � 8��� >:��� 
% �5  �3� 1 7� - ?�? 1 1��� - 8���6 N:�Q��7���z:�TU��(, ��

1 �5�3� 1  7� - ?�? 1 1��� - 8���6 N:�R��7���z:�VWX��(, ��
1 ~ �3z:�TU��(, ���3N:�Q��7�� 1 �3z:�VWX��(, ���3N:�R��7��� � 8��� >:��� 

But both N:�O��7�� are solutions to the “free” radial equation, which is represented in 

the first two terms. Thus both these terms will disappear: 

% �3z:�TU��(, ���3N:�Q��7�� 1 �3z:�VWX��(, ���3N:�R��7��� 8��� ~z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7��� 
 

(31)  

The Lagrange condition (31) can be written in the following two ways:   
�3z:�TU��(, �� � - �3z:�VWX��(, �� N:�R��7��N:�Q��7�� 

 

(32)  

�3z:�VWX��(, �� � -�3z:�TU��(, �� N:�Q��7��N:�R��7�� (33)  

If (32) is substituted into (31): 

% - �3z:�VWX��(, �� N:�R��7��N:�Q��7�� �3N:�Q��7�� 1 �3z:�VWX��(, ���3N:�R��7��
� 8��� ~z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7��� 

% �3z:�VWX��(, �� �- N:�R��7��N:�Q��7�� �3N:�Q��7�� 1 �3N:�R��7���
� 8��� ~z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7��� 

We now multiply by N:�Q��7��: 
% �3z:�VWX��(, �� ~N:�Q��7���3N:�R��7�� - N:�R��7���3N:�Q��7�� �� 8��� N:�Q��7�� ~z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7��� 

 

(34)  

The expression: 
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N:�Q��7���3N:�R��7�� - N:�R��7���3N:�Q��7�� 
Is the Wronskian of the Riccati-Hankel functions, and it is known from the theory 

of the Riccati-Hankel functions that it is equal to 2�7. Thus (34) becomes: 

% �3z:�VWX��(, �� � 12�7 8��� N:�Q��7�� ~z:�TU��(, ��N:�Q��7�� 1 z:�VWX��(, ��N:�R��7��� 
In a similar fashion, when (33) is substituted into (31), the following is obtained: 

�3z:�TU��(, �� �  - 12�7 8��� N:�R��7�� ~ z:�TU��(, ��N:�Q��7�� 1  z:�VWX��(, ��N:�R��7�� � 
Thus we obtain a coupled set of equations: 

�3z:�TU��(, �� �  -N:�R��7��2�7 8��� ~N:�Q��7�� z:�TU��(, �� 1 N:�R��7��  z:�VWX��(, ��� 
 

(35)  

�3z:�VWX��(, �� �  1N:�Q��7��2�7 8��� ~N:�Q��7�� z:�TU��(, �� 1 N:�R��7��  z:�VWX��(, ��� (36)  

This set of equations enables us to easily solve the problem of motion of a particle 

in a potential, and is equivalent to the time-independent Schrödinger’s equation. 

3.3 Calculating the Jost Equations 

Firstly, we will assume ? � 0. This is because, for most systems, the S-wave 

contribution is by far greater than the higher partial waves. S-wave contribution 

corresponds with ? � 0. 
The Riccati-Hankel functions then become: 

N"�R��7�� �  - � exp&1 � 7� '  
 

(37)  

N"�Q��7�� �  1 � exp&- � 7� '  
 

(38)  

Multiplying (38) and (39) then yields:  

N"�R��7�� N"�Q��7�� �    exp&1 � 7� -  � 7� '  
%  N"�R��7�� N"�Q��7�� �  1  

 
(39)  

Also, 

N"�R��7�� N"�R��7�� �  - 1  exp&1 2 � 7�'  
 

(40)  

N"�Q��7�� N"�Q��7�� �  - 1 exp&- 2 �7�  '  
 

(41)  

We can write (36) and (37) as follows: 

�3z:�TU��(, �� �  - 12�7 8��� ~N"�R��7�� N"�Q��7�� z:�TU��(, �� 1 N"�R��7�� N"�R��7��  z"�VWX��(, ��� 
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�3z:�VWX��(, �� �  1 12�7 8��� ~N"�Q��7�� N"�Q��7�� z"�TU��(, �� 1 N"�Q��7�� N"�R��7��  z"�VWX��(, ��� 
The potential will be written as 8��� � 8. 8��� is dependant on �, but we consider 8 

a constant in the general calculations, since we will be working with a step 

potential: when the region is specified, 8 will be adjusted accordingly. 

We then substitute (40), (41) and (42) into the above to obtain the following: 

�3z"�TU��(, �� �  - 12�7 8 ~ z"�TU��(, �� - exp&1 2 � 7�  '   z"�VWX��(, ��� 
 

(42)  

�3z"�VWX��(, �� �  1 12�7 8 ~-exp&- 2 � 7�  ' z"�TU��(, �� 1  z"�VWX��(, ��� 
 

(43)  

Rearrange (42) to make  z"�VWX��(, �� the subject of the formula: 

�3z"�TU��(, �� �  - 12�7 8 ~ z"�TU��(, �� - exp&1 2 � 7�  '   z"�VWX��(, ��� 
% -2�78  �3z"�TU��(, �� �  z"�TU��(, �� -  exp&1 2 � 7�'   z"�VWX��(, �� 
% exp&1 2 � 7�  '   z"�VWX��(, ��  � 1 2�78  �3z"�TU��(, �� 1  z"�TU��(, ��  

% z"�VWX��(, ��  � � 2�78  �3z"�TU��(, �� 1  z"�TU��(, �� �  exp&- 2 � 7� '   
 

(44)  

Take the derivative of (44): 

�3 z"�VWX��(, ��  � �2�78  �3�z"�TU��(, �� 1 �3  z"�TU��(, �� �  exp&- 2 � 7�'
- 2�7 �2�78  �3z"�TU��(, �� 1  z"�TU��(, �� �  exp&- 2 � 7� ' 

% �3 z"�VWX��(, ��  � �2�78  �3�z"�TU��(, �� 1  51 - �2�7��8 6 �3 z"�TU��(, ��
- 2�7 z"�TU��(, �� �  exp&- 2 � 7�  ' 

 

(45)  

Substitute (44) into (43): 

% �3z"�VWX��(, �� �  1 12�7 8 �- z"�TU��(, �� 1  2�78  �3z"�TU��(, �� 1  z"�TU��(, �� � exp&- 2 � 7�  ' 
% �3z"�VWX��(, �� �   �3z"�TU��(, ��exp&- 2 � 7�  ' 

Now substitute (45) into this expression: 
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% �2�78  �3�z"�TU��(, �� 1 51 - �2�7��8 6 �3 z"�TU��(, �� - 2�7 z"�TU��(, �� �  exp&- 2 � 7�  '
�   �3z"�TU��(, ��exp&- 2 � 7�  ' 

Note that the exponentials cancel: 

% �2�78  �3�z"�TU��(, �� 1 51 - �2�7��8 6 �3  z"�TU��(, �� - 2�7 z"�TU��(, �� �  �   �3z"�TU��(, �� 
% 2�78  �3�z"�TU��(, �� - �2�7��8  �3  z"�TU��(, �� - 2�7 z"�TU��(, ��  �  0 

%  �3�z"�TU��(, �� -  2�7 �3 z"�TU��(, �� -  8 z"�TU��(, ��  �  0 
 

(46)  

We need to solve this differential equation. Suppose the solution is of the form: 

 z:�TU��(, �� �  *� 3 
Thus we can write: 

 %  �3z:�TU��(, �� �  � *� 3 
 %  �3�z:�TU��(, �� �  �� *� 3 

Substituting these three equations into the differential equation (46) yields: 

�� *� 3 -  2�7 � *� 3 - 8*� 3   �  0 
%  �� -  2�7 � - 8 �  0 

Now we need to find the solutions of λ: 

λ � 2�7 O p�2�7�� 1  482  

% λ � 2�7 O √-47� 1  482  

% λ � 2�7 O  2√8 - 7� 2  

% λ �  �7 O p8 - 7�  
% λ �  �7 O  �p7� - 8  

Let: 

r �  p7� - 8  
 

(47)  

% λ � �7 O  r�� 
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The solution to the differential equation is thus a linear combination of the 

proposed solution with the possible values of λ: 

 z"�TU��(, �� � �1 *�ZQ q�T3  1  �2 *�ZR q�T3 (48)  

 

�1 and �2 are constants. Now we need to find  z"�VWX��(, ��. We take the derivative of 

our expression for  z"�TU��(, ��:  
 % �3z"�TU��(, �� � �7 -  r���1 *�ZQ q�T3  1 �7 1  r���2 *�ZR q�T3 

 
(49)  

 

We substitute (48) and (49) into (50): 

    z"�VWX��(, ��  � � 2�78  �3z"�TU��(, �� 1  z"�TU��(, �� �  exp&- 2 � 7� '   
    z"�VWX��(, ��  � �2�78 �7 -  r���1 *�ZQ q�T3  1 2�78 �7 1  r���2 *�ZR q�T3 1�1 *�ZQ q�T3  

1  �2 *�ZR q�T3  �  exp&- 2 � 7� '   
   %  z"�VWX��(, ��  � 5F-27�8 1  r 278 G�1 *�ZQ q�T3  1  F-7 27�8 -  r 278 G�2 *�ZR q�T3

1 �1 *�ZQ q�T3  1  �2 *�ZR q�T3  6  exp&- 2 � 7� '   
   %  z"�VWX��(, ��  � F1 - 27�8 1 278 rG�1 *�QZQ q�T3  1  F1 - 27�8 - 278 rG�2 *�QZR q�T3      

So finally we have: 

 z"�TU��(, �� � �1 *�ZQ q�T3  1  �2 *�ZR q�T3 
 

(50)  

 z"�VWX��(, ��  � F1 - 27�8 1 278 rG�1 *�QZQ q�T3  
1 F1 - 27�8 - 278 rG�2 *�QZR q�T3     

 

(51)  

All that remain is to find the constants �1 and �2, that are determined with the 

boundary conditions. (50) and (51) are thus general solutions for any step-

potential. Once �1 and �2 are determined, we take the limit of (50) and (51) as � K  ∞, as indicated in (28) and (29), to obtain the Jost functions. 
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3.4 The Jost Equations for the Given Potential 

 

3.4.1   The Potential 
 

Finally, the preliminaries have been attended to, and we will apply all our 

calculations to the potential shown in Figure 3. 

 

 


��� �  � 
�    �S    0 � � �  ��
�    �S    �� � � �  ��0    �S    �� �  � �  ∞  � 
 

(52)  

Recall equation (14): 

8��� � 2μħ� 
��� 

% 8��� �  
���
�� 2μħ� 
�    �S    0 � � �  ��2μħ� 
�    �S    �� � � � ��0    �S    �� �  � �  ∞  

� 
It should now become clear why we assumed that 8��� � 8 in the calculations. We 

will simply let: 

8 � � 8�    �S    0 � � �  ��8�    �S    �� � � � ��0    �S    �� �  � �  ∞  � (53)  

 

With: 
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8�,� � 2μħ� 
�,� 
It should also be clear that the wave function will differ in each of the three regions 

of Figure 3, due to the difference in potential in each region. Thus the functions z:�TU��(, �� and z:�VWX��(, �� will also differ in the three regions, which implies that the 

constants �1 and �2 also differ in each region, since the boundaries of each region 

differ. Unfortunately the constant values for the first two regions are required to 

calculate the constants for the third region, the region we are most interested in: 

the limit of z:�TU��(, �� and z:�VWX��(, �� as � K  ∞ falls within this region.  

It is relatively easy to calculate the constants for the first region, since the wave 

equation behaves in a very specific way at � � 0.  
In the second and third region, we make use of the fact that that the wave function 

and its derivative with respect to � must be continuous for all values of �, implying 

that the same holds for $�� � , which in turn implies the same for >:�(, ��. This 

arises from the fact that, as is known from Calculus, if two functions are 

continuous in a specific interval, the product of these two functions will also be 

continuous in this interval. Thus >"�(, ��and �3>"�(, �� are continuous at � �  �� and � �  ��. 
To simplify matters, we consider each region separately. 

3.4.2   Region One: 0 � � �  �� 
We then have the following: 

�1 � �1� 
�2 �  �2� 
8 �  8� 

r �  r� � p7� - 8�  
 z"��TU��(, �� � �1� *�ZQ q��T3  1  �2�*�ZR q��T3 

 
(54)  

 z"��VWX��(, ��  � F1 - 27�8� 1 278� r�G�1� *�QZQ q��T3  1  F1 - 27�8� - 278� r�G�2� *�QZR q��T3     
 

(55)  

The added subscripts are indicative of the applicable region. The solution to the 

Radial Schrödinger’s Equation for this region is then given by: 

>"��(, �� �  z"��TU��(, �� N"�Q��7�� 1  z"��VWX��(, �� N"�R��7�� 
As is discussed earlier, we know that >:�(, 0� � 0. Let us apply this condition to the 

above: 
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>"��(, 0� �  z1"�TU��(, 0� N"�Q��0� 1  z1"�VWX��(, 0� N"�R��0� � 0 
 % z1"�TU��(, 0� � 1  z1"�VWX��(, 0��-�� � 0 

 % z1"�TU��(, 0�  �  z1"�VWX��(, 0� 
 

(56)  

 

From the alternative Schrödinger’s Radial Equation, equations (35) and (36): 

�3z"�TU��(, 0� �  -N"�R��70�2�7 8�0� ~N"�Q��70� z"�TU��(, 0� 1 N"�R��70�  z"�VWX��(, 0�� 
�3z"�VWX��(, �� �  1N"�Q��70�2�7 8�0� ~N"�Q��70� z"�TU��(, 0� 1  N"�R��70�  z"�VWX��(, 0�� 

Taking (56) into account: 

% �3z1:�TU��(, 0� �  - �-��2�7 8� ~� z1"�TU��(, �� 1 �-��  z1"�TU��(, 0�� � 0 
�3z1:�VWX��(, 0� �  1 �2�7 8� ~� z1"�TU��(, �� 1  �-��  z1"�TU��(, 0�� � 0 

Thus we obtain: 

�3z1"�TU��(, 0� � �3z1"�VWX��(, 0� �  0 
Thus z1"�TU��(, 0� and z1"�VWX��(, 0� are both constants, and from (56) they must be 

equal: 

z1"�TU��(, 0� � z1"�VWX��(, 0� �  ��]���]� 
We are not concerned with the normalization of these functions, so we let this 

constant value equal 1. Thus: 

 z1"�TU/VWX��(, 0� � 1 
 

(57)  

Applying this to (54) is easy: 

 z"��TU��(, 0� � �1�   1  �2� � 1 
 % �2� � �1� - 1 
 

(58)  

Applying it to (55) is more challenging. Consider: 

 z"��VWX��(, 0�  � F1 - 27�8� 1 278� r�G�1�  1  F1 - 27�8� - 278� r�G�2�     
Substitute (58): 
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 z"��VWX��(, 0�  � F1 - 27�8� 1 278� r�G�1�  1  F1 - 27�8� - 278� r�G ��1� - 1�     
 z"��VWX��(, 0�  � CF1 - 27�8� G 1 278� r�D�1�  1  CF1 - 27�8� G - 278� r�D�1�

- F1 - 27�8� - 278� r�G     
 % z"��VWX��(, 0�  � 2F1 - 27�8� G�1�  -  F1 - 27�8� - 278� r�G  

Now apply (57): 

2F1 - 27�8� G�1�  - F1 - 27�8� - 278� r�G  � 1  
% �1� � .1 - 27�8� - 278� r�/2 .1 - 27�8� /  

% �1� � �8� - 27�� -  27 r�2�8� - 27��  

% �1� � 12 - 7 r�8� - 27� 
To find �2� we simply use (58): 

�2� � 1 - �1� 
% �2� � 1 - �1�  � 1 - �8� - 27�� -  27 r�2�8� - 27��   

% �2� � �8� - 27�� 1  27 r�2�8� - 27��   
% �2� � 12 1 7 r�8� - 27�  

To sum up: 

�1� � 12 - 7 r�8� - 27� 
 

(59)  

 �2� � 12 1 7 r�8� - 27� 
 
 
 

(60)  



Page | 25  

 

3.4.3   Region Two: �� � � � �� 
We then have the following: 

�1 � �1� 
�2 �  �2� 
8 �  8� 

r �  r� � p7� - 8�  
 z"��TU��(, �� � �1� *�ZQ qL�T3  1  �2�*�ZR qL�T3 (61)  

 

 z"��VWX��(, ��  � F1 - 27�8� 1 278� r�G�1� *�QZQ qL�T3  1  F1 - 27�8� - 278� r�G�2� *�QZR qL�T3      
 
 

(62)  

>"��(, �� �  z"��TU��(, �� N"�Q��7�� 1  z"��VWX��(, �� N"�R��7�� 
We know that: 

>"��(, ��� � >"��(, ��� 
 % z"��TU��(, ��� N"�Q��7��� 1 z"��VWX��(, ��� N"�R��7����  z"��TU��(, ��� N"�Q��7��� 1  z"��VWX��(, ��� N"�R��7��� 

 % z"��TU��(, ��� � eQ T Zt� - z"��VWX��(, ���� eR T Zt� �  z"��TU��(, ��� � eQ T Zt� -  z"��VWX��(, ���� eR T Zt� 
 % z"��TU��(, ���  eQ T Zt� -  z"��TU��(, ���  eQ T Zt�� z"��VWX��(, ��� eR T Zt� -  z"��VWX��(, ��� eR T Zt� 

 

(63)  

We also know that: 

�3>"��(, ��� � �3>"��(, ��� 
% �3�t� . z"��TU��(, �� N"�Q��7�� 1 z"��VWX��(, �� N"�R��7��/

� �3�t� . z"��TU��(, �� N"�Q��7�� 1  z"��VWX��(, �� N"�R��7��/ 
% �3�t� � z"��TU��(, �� � eQ T Z3 - z"��VWX��(, ��� eR T Z3�� �3�t� � z"��TU��(, �� � eQ T Z3 -  z"��VWX��(, ��� eR T Z3� 
% �3�t� � z"��TU��(, ��  eQ T Z3 -z"��VWX��(, �� eR T Z3�� �3�t� � z"��TU��(, �� eQ T Z3 -  z"��VWX��(, �� eR T Z3� 
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% �-�7 z"��TU��(, ���  eQ T Zt� - �7 z"��VWX��(, ��� eR T Zt��1 � �3z"��TU��(, ���  eQ T Zt� - �3z"��VWX��(, ��� eR T Zt��� �-�7 z"��TU��(, ��� eQ T Zt� - �7 z"��VWX��(, ��� eR T Zt��1 � �3z"��TU��(, ��� eQ T Zt� -  �3z"��VWX��(, ��� eR T Zt�� 
 

(64)  

Consider the two equations (42) and (43) which are derived from (35) and (36): 

�3z"�TU��(, �� �  - 12�7 8 ~ z"�TU��(, �� - eR � T Z3   z"�VWX��(, ��� 
�3z"�VWX��(, �� �  1 12�7 8 ~-eQ � T Z3  z"�TU��(, �� 1  z"�VWX��(, ��� 

 

% �3z"�TU��(, ��eQ T Z3 - �3z"�VWX��(, ��eR T Z3� - 12�7 8 ~ eQ T Z3z"�TU��(, �� - eR  T Z3    z"�VWX��(, ���
- 12�7 8 ~-eQ  T Z3  z"�TU��(, �� 1 eR T Z3  z"�VWX��(, ���  

% �3z"�TU��(, ��eQ T Z3 - �3z"�VWX��(, ��eR T Z3� - 12�7 8 ~ eQ T Z3z"�TU��(, �� - eR  T Z3    z"�VWX��(, �� - eQ  T Z3  z"�TU��(, ��1 eR T Z3  z"�VWX��(, ��� 
% �3z"�TU��(, ��eQ T Z3 - �3z"�VWX��(, ��eR T Z3 � 0 

% �3z"�/��TU� �(, ���eQ T Zt� - �3z"�/��VWX��(, ���eR T Zt� � 0 
Taking this into account, (64) becomes: 

�-�7 z"��TU��(, ���  eQ T Zt� - �7 z"��VWX��(, ��� eR T Zt��� �-�7 z"��TU��(, ��� eQ T Zt� - �7 z"��VWX��(, ��� eR T Zt�� 
%  z"��TU��(, ���  eQ T Zt� -  z"��TU��(, ��� eQ T Zt� � - z"��VWX��(, ��� eR T Zt� 1  z"��VWX��(, ��� eR T Zt� 
Now substitute (63): 

z"��VWX��(, ��� eR T Zt� -  z"��VWX��(, ��� eR T Zt� � - z"��VWX��(, ��� eR T Zt� 1  z"��VWX��(, ��� eR T Zt� 
% z"��VWX��(, ���  �  z"��VWX��(, ���  

When substituting this back into (63) we obtain: 

 z"��TU��(, ���  eQ T Zt� -  z"��TU��(, ���  eQ T Zt� � z"��VWX��(, ��� eR T Zt� - z"��VWX��(, ��� eR T Zt� 
 % z"��TU��(, ���  eQ T Zt� -  z"��TU��(, ���  eQ T Zt� � 0 
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 % z"��TU��(, ���   �  z"��TU��(, ���   
We then have the following highly useful result: 

 z"��TU��(, ���   �  z"��TU��(, ���   
 

(65)  

z"��VWX��(, ���  �  z"��VWX��(, ��� (66)  

 

In fact, this is valid for � �  �� as well, which can be shown in an identical way to 

the above. For this reason, the derivation is not shown but assumed to be true. 

From (65) we can then write: 

�1� *�ZQ q��Tt�  1  �2�*�ZR q��Tt� � �1� *�ZQ qL�Tt�  1  �2�*�ZR qL�Tt� 
% �1� *�ZQ q��Tt�  1 �2�*�ZR q��Tt� - �1� *�ZQ qL�Tt�  �  1 �2�*�ZR qL�Tt� 

 %  �2� �  �1� *�Q q�QqL�Tt�  1  �2�*�R q�QqL�Tt� - �1� *�Q� qL�Tt� 
 
From (66) we have: 

(67)  

 

F1 - 27�8� 1 278� r�G�1� *�QZQ q��Tt�  1 F1 - 27�8� - 278� r�G�2� *�QZR q��Tt�
� F1 - 27�8� 1 278� r�G�1� *�QZQ qL�Tt�  1  F1 - 27�8� - 278� r�G�2� *�QZR qL�Tt�     

Multiply by 8�8� *ZTt�: 
% �8�8� - 27�8� 1 278�r���1� *�Q q��Tt�  1  �8�8� - 27�8� -  278�r���2� *�R q��Tt�� �8�8� - 27�8� 1 278�r���1� *�Q qL�Tt�  1  �8�8� - 27�8� -  278�r���2� *�R qL�Tt�     

Now substitute (67): 

% �8�8� - 27�8� 1 278�r���1� *�Q q��Tt�  1  �8�8� - 27�8� -  278�r���2� *�R q��Tt�� �8�8� - 27�8� 1 278�r���1� *�Q qL�Tt�  1  �8�8� - 27�8� -  278�r��H�1� *�Q q�QqL�Tt�  1  �2�*�R q�QqL�Tt�- �1� *�Q� qL�Tt�� *�R qL�Tt�     
% �8�8� - 27�8� 1 278�r���1� *�Q q��Tt�  1  �8�8� - 27�8� -  278�r���2� *�R q��Tt�� �8�8� - 27�8� 1 278�r���1� *�Q qL�Tt�  1  �8�8� - 27�8� -  278�r��H�1� *�Q q��Tt�  1  �2�*�R q��Tt� - �1� *�Q qL�Tt�I     
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% �8�8� - 27�8� 1 278�r���1� *�Q q��Tt�  1  �8�8� - 27�8� -  278�r���2� *�R q��Tt�� �8�8� - 27�8� 1 278�r���1� *�Q qL�Tt�  1 �8�8� - 27�8� -  278�r���1� *�Q q��Tt�  1  �8�8� - 27�8� -  278�r���2�*�R q��Tt�- �8�8� - 27�8� -  278�r���1� *�Q qL�Tt�      
% �-27�8� 1 278�r� 1 27�8� 1  278�r���1� *�Q q��Tt�  1  �-27�8� -  278�r� 1 27�8� 1  278�r���2� *�R q��Tt�� �478�r���1� *�Q qL�Tt�     

Multiply by 
��Z *�R qL�Tt�: 

% �-78� 1 8�r� 1 78� 1 8�r���1� *�Q q�R qL�Tt�  1 �-78� - 8�r� 1 78� 1 8�r���2� *�R q�R qL�Tt� �  2 8�r��1�     
% �7�8� - 8�� 1 8�r� 1 8�r���1� *�Q q�R qL�Tt�  1  �7�8� - 8�� 1 8�r� - 8�r���2� *�R q�R qL�Tt�2 8�r�� �1�     
 

% �1� � 12F7�8� - 8�� 8�r� 1  1 1 8�r� 8�r�G�1� *�Q q�R qL�Tt�  
1  12 F7�8� - 8�� 8�r� 1  1 - 8�r� 8�r�G�2� *�R q�R qL�Tt�   

% �1� � 12 8�r� �78� - 78� 1  8�r� 1 8�r���1� *�Q q�R qL�Tt�  
1  12 8�r� �78� - 78� 1  8�r� - 8�r���2� *�R q�R qL�Tt�   

% �1� � 12 8�r� H8�� r� 1 7� 1 8��r� - 7�I�1� *�Q q�R qL�Tt�  
1  12 8�r� H8��r� 1 7� 1 8��-r� - 7�I�2� *�R q�R qL�Tt�   

Now we substitute this into our expression for �2�, equation (67): 

�2� � �1� *�Q q�QqL�Tt�  1 �2�*�R q�QqL�Tt� - �1� *�Q� qL�Tt� 
% �2� � �1� *�Q q�QqL�Tt�  1  �2�*�R q�QqL�Tt�- . 12 8�r� H8�� r� 1 7� 1 8��r� - 7�I�1� *�Q q�R qL�Tt�  

1  12 8�r� H8��r� 1 7� 1 8��-r� - 7�I�2� *�R q�R qL�Tt�/ *�Q� qL�Tt� 



Page | 29  

 

% �2� � �1� *�Q q�QqL�Tt�  1  �2�*�R q�QqL�Tt�- 12 8�r� H8�� r� 1 7� 1 8��r� - 7�I�1� *�Q q�Q qL�Tt�
- 12 8�r� H8��r� 1 7� 1 8��-r� - 7�I�2� *�R q�Q qL�Tt�   

% �2� � F1 - 12 8�r� H8�� r� 1 7� 1 8��r� - 7�IG�1� *�Q q�QqL�Tt�  
1 F1 - 12 8�r� H8��r� 1 7� 1 8��-r� - 7�IG�2�*�R q�QqL�Tt� 

% �2� � 12 8�r� �2 8�r� - H8�� r� 1 7� 1 8��r� - 7�I��1� *�Q q�QqL�Tt�  
1  12 8�r� �2 8�r� - H8��r� 1 7� 1 8��-r� - 7�I� �2�*�R q�QqL�Tt� 

% �2� � 12 8�r� H2 8�r�-8�r� - 8�7 - 8��r� - 7�I�1� *�Q q�QqL�Tt�  
1  12 8�r� H2 8�r�-8�r� - 8�7 - 8��-r� - 7�I�2�*�R q�QqL�Tt� 

% �2� � 12 8�r� H 8��r� - 7� - 8��r� - 7�I�1� *�Q q�QqL�Tt�  
1 12 8�r� H 8��r� - 7� - 8��-r� - 7�I�2�*�R q�QqL�Tt� 

 

So then: 

 �1� � 12 8�r� H8�� r� 1 7� 1 8��r� - 7�I�1� *�Q q�R qL�Tt�  
1  12 8�r� H8��r� 1 7� 1 8��-r� - 7�I�2� *�R q�R qL�Tt�   

 

(68)  

�2� � 12 8�r� H 8��r� - 7� 1 8��-r� 1 7�I�1� *�Q q�QqL�Tt�  
1  12 8�r� H 8��r� - 7� 1 8��1r� 1 7�I�2�*�R q�QqL�Tt� 

 

(69)  

The above is also applicable to the � � �� , with the appropriate change in 

subscripts. When substituting (59) and (60) we then obtain: 

 �1� � 12 8�r� H8�� r� 1 7� 1 8��r� - 7�I .12 - 7 r�8� - 27�/ *�Q q�R qL�Tt�  1  12 8�r� H8��r� 1 7� 1 8��-r� - 7�I .121 7 r�8� - 27�/ *�q�R qL�Tt�   
(70)  
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 �2� � 12 8�r� H 8��r� - 7� 1 8��-r� 1 7�I .12 - 7 r�8� - 27�/ *�Q q�QqL�Tt�  1 12 8�r� H 8��r� - 7� 1 8��1r� 1 7�I .121 7 r�8� - 27�/ *�q�QqL�Tt� 
 

(71)  

 

3.4.4   Region Three: �� � � �  ∞ 

We then have the following: 

�1 � �1� 
�2 �  �2� 
8 � 8� �  0 

r � r� � p7� � 7 
  z"��TU��(, �� � �1� *�ZQ Z�T3  1  �2�*�ZR Z�T3 � �1�   1 �2�*�ZT3 (72)  

 

 z"��VWX��(, ��  � F1 - 27�8� 1 278� 7G�1� *�QZQ Z�T3  1 F1 - 27�8� - 278� 7G�2� *�QZR Z�T3� �1� *Q�ZT3  1 F1 - 47�8� G�2� (73)  

We know that the following holds, since it was calculated for the preceding region: 

�1� � 12 8�r� H8�� r� 1 7� 1 8��r� - 7�I�1� *�Q qLR q��TtL  
1  12 8�r� H8��r� 1 7� 1 8��-r� - 7�I�2� *�R qLR q��TtL   

�2� � 12 8�r� H 8��r� - 7� 1 8��-r� 1 7�I�1� *�Q qLQq��TtL  
1 12 8�r� H 8��r� - 7� 1 8��1r� 1 7�I�2�*�R qLQq��TtL 

 

When substituting 8� � 0 and r� � 7, we then obtain: 

 

�1� � 128�7 H8�� 7 1 7�I�1� *�Q qLR Z�TtL  1  128�7 H8��7 1 7�I�2� *�R qLR Z�TtL 
   % �1� � �1� *�Q qLR Z�TtL  1  �2� *�R qLR Z�TtL 
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And also: 

�2� � 128�7 � 0 1 0��1� *�Q qLQq��TtL  1  128�7 � 0 1  0��2�*�R qLQq��TtL 
% �2� �  0 

So: 

% �1� � �1� *�Q qLR Z�TtL  1  �2� *�R qLR Z�TtL (74)  �2� �  0 
 

(75)  

This means that (72)and (73) becomes: 

 

 z"��TU��(, �� � H�1� *�Q qLR Z�TtL  1  �2� *�R qLR Z�TtLI *�ZQ Z�T3  1  �0�*�ZR Z�T3� �1� *�Q qLR Z�TtL  1  �2� *�R qLR Z�TtL 
 z"��VWX��(, ��  � H�1� *�Q qLR Z�TtL  1 �2� *�R qLR Z�TtLI *Q�ZT3  1  F1 - 47�8� G �0�

� �1� *�Q qLR Z�TtLQ�ZT3  1  �2� *�R qLR Z�TtLQ�ZT3 
Thus: 

 z"��TU��(, �� � �1� *�Q qLR Z�TtL  1  �2� *�R qLR Z�TtL 
 

(76)  

 z"��VWX��(, �� � �1� *�Q qLR Z�TtLQ�ZT3  1  �2� *�R qLR Z�TtLQ�ZT3 
 

(77)  

With �1� and �2� given by equations (70) and (71). 

3.4.5   The Jost Equations 

From (28) and (29), the Jost functions are given by: 

 S:�TU��(� � lim3K ∞z:�TU��(, �� 
   S:�VWX��(�  � lim3K ∞z:�VWX��(, ��    

For our specific potential: 

 S:�TU��(� � lim3K ∞z:�TU��(, �� �  lim3KtL z"�TU��(, �� � z"��TU��(, ���   
   S:�VWX��(�  � lim3K ∞z:�VWX��(, �� � lim3K tL z"�VWX��(, �� � z"��VWX��(, ���      

Thus, when substituting (76) and (77): 

 S"�TU��(� � �1� *�Q qLR Z�TtL  1  �2� *�R qLR Z�TtL 
 

(78)  

   S"�VWX��(�  � �1� *�Q qLQ Z�TtL  1 �2� *�R qLQZ�TtL     (79)  
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With �1� and �2� given by equations (70) and (71). 

Finally we have the Jost equations! 

4. Results 
4.1 Concerning Units 

I provide a short explanation pertaining to the units of the variables used in this 

paper. We have the following, by definition, from equation (13): 

7� � 2μ(ħ�   
The unit of a symbol will be indicated by placing the symbol in square brackets. So, 

we have the following: 

&7'� � &μ'&('&ħ'�   
 

Energy can be given in �*8 and mass in �*8/��, with � the speed of light in a 

vacuum. Thus: 

&7'� � ��*8��/���*8�&ħ'�   
% &7'� � ��*8��&�'�&ħ'� 
% &7' � ��*8�&�ħ'  

We can write the factor �ħ as 197 �*8 S@. Thus &�ħ' � �*8 S@: 

% &7' � ��*8��*8 S@ 

% &7' � 1S@ 

Thus 7 will be given in inverse femto-meter, S@Q�. It follows that � is given in S@. 

Also, mass will be given simply in �*8, since it is obvious that the � is unnecessary 

if, in stead of �ħ, we let: 

ħ � 197 �*8 S@ 
 

(80)  

To sum up, then: Energy and potential are given in �*8, since they are related. 

Mass, and equivalent mass, are also given in �*8. 7 is given in S@Q�, and � in S@. 

In choosing these units, the data becomes significantly more manageable. Most 

papers that make use of Quantum Mechanics do not explain the use of specific 
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units, which can lead to much confusion. This is why I include this bit of 

dimensional analysis.  

 

4.2 The Spectral Points 

The search for the spectral points is a tiresome affair, since the expression for  S"�TU��(� is far from simple. Thus it must be numerically solved using some form of 

mathematical programming software. I make use of Maple, and the coding I used is 

enclosed as Appendix A.  

A huge problem I encountered in searching for spectral points is that generally the 

program gives only one value, and stops the search, unless it is told to ignore the 

found value and proceed. The values that are obtained in such a manner are 

haphazard and unreliable, since some of the bound states appear to be missing.    

Thankfully, I was able to find a method that works admirably: if the search is 

conducted close to a specific real value, and further searches are conducted at real 

values at small discreet steps from the previous value, the chances of obtaining all 

the bound states increase dramatically. Since there are infinitely many resonant 

states, it is sufficient to find a relatively small number of them to be able to make 

reliable conclusions. 

The only flaw in this method is that very large bound state values will typically not 

be found, since the search is conducted at a starting point of -1 and ends at 1. 

Values much larger than 1 are found, which is encouraging, but there is no 

guarantee that all large bound states are located. Even so, the results look 

promising.    

The values chosen for the radii and the potential magnitudes of the step-potential, 

as well as the equivalent mass, are chosen in such a way to correspond roughly to 

actual experimental data. For example, the mass of a proton is slightly larger than 900 �*  and that of an electron is roughly 0.5 �* . Thus equivalent masses in this 

range, as well as significantly larger values, are researched. The same applies to the 

other choices. 

 

We want to research the effect a change in any of these values has on the spectral 

points. This cannot be done all at once, thus the effect of each is considered 

separately. 

 

4.2.1   Change in Equivalent Mass, μ 
 

The following standard values for the other variables are chosen: 

�� � 7.5 S@ �� � 15 S@ 
� � -100 �*8 
� � 100 �*8 
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The data obtained is graphically represented in the 7-plane. Note that, if not clearly 

indicated, µ is given in �*8, � in S@, and either 
 in �*8. 

 

 
Figure 4 

It is wonderfully clear that the bound state energies become larger as µ becomes 

larger. Also, the imaginary part of the resonance zeros move significantly closer 

zero for greater µ. This indicates that the resonance energies are small, and that 

they are of small width. It is also interesting to note that the virtual states occur for  

small µ only; specifically µ � 1. 
4.2.2 Change in Radii, �� and �� 

The following standard values for the other variables are chosen: 

µ � 100�*8 
� � -100 �*8 
� � 100 �*8 

Let us first consider a scenario where �� - �� is much larger than ��:  
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Figure 5 

Clearly, there are no bound  or virtual states. Note also that �� � 10�� in all three 

plots in Figure 3, and that the greater either � is, the closer £@�7� is to zero. As was 

the case with an increase in µ, this is indicative of small resonance energies that 

have small width, and thus have large half-lives. Although the data is not given 

here, where �� � 100�� and �� � 1000��, similar plots are obtained. 

Let us now consider a scenario where �� - �� is much smaller than ��:  
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Figure 6 

 

Table 1: Table indicating the number of bound states for 
the systems of Figure 5 

 �� � 10; ��  �  11 �� � 100; ��  �  101 �� � 1000; ��  �  1001 

Im
(k

) 
v
a
lu

e
s
 

   

0.706672885 0.510263108 0.50606993 

0.375796676 0.538687025 0.509200897 

0.611580467 0.075237767 - 

- 0.351360465 - 

- 0.607189389 - 

Number of 
Bound 
States 

3 5 2 

 

It appears that, unlike Figure 4, there is an abundance of bound states if �� - �� is 
much smaller than ��. Yet these bound states do not decrease or increase with 

greater values of either �. It may be that all the bound states of the systems have 

not been found, and if this is the case, better conclusions may be drawn with better 

data. 
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It would be foolish to assume that there are no resonance states for the system 

where �� � 10 and �� � 11, since there can be infinitely many. The program for 

finding the spectral points concentrates its search in an area relatively close to 

zero, thus it would seem that the resonances for this system are at much larger 

values. 

On the other hand, the system where �� � 1000 and �� � 1001 has an abundance of 

complex roots in the area under consideration. Most of these roots are not even 

shown in Figure 4, since the plot then becomes confusing. Not all these complex 

roots represent resonant states, but a sufficiently vast number certainly do: we can 

thus conclude that sufficiently large values of �� with small �� result in a system 

with an incredibly large concentration of resonance states. To justify this 

statement, consider the following:    

Figure 7 

Note that there are only two bound states at:  

£@�7� � 0.507525 1/S@  and £@�7� � 0.508153 1/S@  

 This is not clear from the plot due to the over-abundance of points. 

We will finally consider a situation where �� and ��-�� are exactly the same:  
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Figure 8 

All the systems have bound states, but nothing conclusive can be said about the 

number or position of said states. The resonances, on the other hand, seem to 

decrease as the radii increase. 

4.2.3 Change in Potentials, 
� and 
� 
The following standard values for the other variables are chosen: 

µ � 100�*8 �� � 7.5 S@ �� � 15 S@ 

Firstly, we consider spectral points for systems where 
� is held constant at -1 MeV 

throughout, and 
� varies: 
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Figure 9 

 

From Figure 9 it is clear that resonances move further away from the �*�7� axis as 
the second potential increases. Also, virtual states are present for the two small 

values of  
�. 
Figure 10 contains the same data as Figure 9, but shows only the bound states: 
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Figure 10 

From Figure 10 it is clearer that each system has only one bound state, and that 

the magnitude of the energy of this state increases as the 
� increases.    

Now, we consider spectral points for systems where 
� is held constant at 1 �*8 

throughout, and 
� varies. I draw two graphs; one of the resonant states, and one 

of the bound and virtual states: 
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Figure 11 
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Figure 12 
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It is interesting that there does not seem to be a relationship between 
� and the 

resonant states, as was the case with varying 
�. Once again, though, there are 

more virtual states for smaller 
� and a definite increase in bound states for greater 
�. The states seem to shift upwards along the £@�7� axis.    
Finally we consider systems where the 
� is equal to 
�, but with opposite sign. 

Again, two graphs are drawn: 
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Figure 13 
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Figure 14 



Page | 46  

 

Here we have a general increase in potential depth. Resonant state energies are 

small and have smaller width as the depths increase, there are more virtual states 

for small potential depths, but, interestingly, there is no increase in bound states 

with an increase in potential depth. This is provided that all the bound states have 

been found, which is not necessarily the case. Yet even the medium sized potentials 

have only one bound state, where in other scenarios there were more. We will thus 

assume that all bound states are found, and that there is no increase in bound 

states for a general increase in potential depth.  

5. Conclusions 

Firstly, we can most certainly conclude that the state of the system is dependent on 

the equivalent mass of the system, radially dependant, and dependant on the depth 

of the potential. 

A system with small equivalent mass will have more virtual states, and less bound 

states. For a system with greater mass, the virtual states become bound states: 

there is sufficient energy. In fact, as the mass increases, the bound state energy 

increases. An increase in mass will therefore cause in increase in energy. 

Also, the placement of the complex roots indicate a definite decrease in resonant 

state energies and an increase in “lifespan” of these energies. Particles in a system 

with a large equivalent mass will thus most likely be in the bound state, or in a 

state that is practically bound.  

For a system with a small first radius and a large second radius, where the 

negative potential is in other words very sharp, no bound or virtual states are 

evident, and the resonances again decrease in size and width, as the radii become 

larger. This is understandable if we take the negative potential to be attractive and 

the positive potential to be repulsive: the repulsive potential overpowers the 

attractive potential since it exists in a much larger area. 

When we consider a system where the first radius is significantly larger than the 

second, there is an abundance of bound states. In this case, the attractive potential 

covers a larger area than the repulsive potential; thus more bound states can, in 

fact, be expected. It is a pity that it cannot be said that the number of bound states 

increase proportionately with an increase in the first radius. Further study will 

have to be done to ascertain if there is a relationship. The data obtained concerning 

the resonant and virtual states in this system is also unsatisfactory, since no 

logical conclusion can be drawn from it.   

When we look at large differences between the potentials, the hypothesis that the 

size of- and area covered by the attractive and repulsive potentials directly 

influences the bound states is, thankfully, justified: 

For a small negative potential and a large positive potential, there is no decrease in 

bound states, but there is no increase in bound states either: in all systems we 

calculated, there is only one bound state. Also, there is a marked increase in bound 
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states as the negative potential is increased sufficiently to overpower the positive 

potential, where the attraction is greater than the repulsion, in other words. 

Once again, there is little we can say about the resonance states. They certainly 

move up and out as either potential increases, but since there appears to be equal 

change in £@�7� and �*�7�, the values of £@�(� and �*�(� will stay roughly the same 

as the potential increases. 

Finally, for the systems where both radii and both potentials are the same, we can 

draw three conclusions: firstly, the data does not contradict our previous 

conclusion. Secondly, we can clearly see that there are no virtual states for smaller 

potentials and greater potentials result in bound states of larger energies. Thirdly, 

it seems that larger radii as well as larger potentials result in smaller resonances of 

greater lifespan.     

 

6. Discussion 

One may now ask what the point was of all that trouble to make these few rather 

obvious conclusions. It seems hardly worth the effort, yet there are two highly 

valuable reasons: 

The fact that the conclusions coincide perfectly with what is generally expected is 

very encouraging: it is a reliable indication that the theory works. The simple fact 

that the data behaves in a way that it is expected to behave, should not be sneered 

at; it is a remarkable feat. It enables us to apply this theory to physical potentials 

with the greatest of confidence, to obtain much needed data on quantum systems 

to predict information on scattering, as well as justifying experimental data.    

Also, after months of misunderstandings, dead ends, faulty programming, 

misinterpretation of data, and stress in general, I can safely say that I have a very 

good understanding of the basics of Jost Functions and their application to 

scattering problems.   
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7. Appendix A 

An example of the code used : 
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