# The structure of excited states seen in double beta decay

S. P. Bvumbi<sup>1</sup>, J. F. Sharpey-Schafer<sup>2, 3</sup>, S. H Connell<sup>1</sup>, S. M. Mullins<sup>3</sup>, A. E. Lawrie<sup>3</sup>, J. J. Lawrie<sup>3</sup>, P. Papka<sup>3, 4</sup>, S. N. T. Majola<sup>5</sup>, O. Shirinda<sup>2</sup>, P. Datta<sup>3</sup>, P. Jones<sup>3</sup>, A. Minkova<sup>6</sup>, J. Timár<sup>7</sup>, B. Nyáko<sup>7</sup>, L. L. Riedinger<sup>8</sup>, I. Ragnarsson<sup>9</sup>, P. E. Garrett<sup>10</sup>, and L. Bianco<sup>10</sup>

<sup>1</sup> University of Johannesburg, South Africa, P. O. Box 524, Auckland Park 2006, South Africa <sup>2</sup> University of the Western Cape, Department of Physics, P/B X17, Bellville 7535, South Africa

<sup>3</sup> iThemba LABS, P. O. Box 722, Somerset-West 7129, South Africa

<sup>4</sup> University of Stellenbosch, Department of Physics, P/B X1, Stellenbosch 7602, South AFrica
<sup>5</sup> University of Cape Town, Rondebosch 7701, Cape Town, South Africa

<sup>6</sup> Faculty of Physics, St. Kliment Ohridski University of Sofia, Sofia 1164, Bulgaria

<sup>7</sup> ATOMKI, P. O. Box 51, 4001 Debrecen, Hungary

<sup>8</sup> University of Tennessee, Department of Physics and Astronomy, Knoxville, Tennessee 37996,

USA

<sup>9</sup> Division of Mathematical Physics, LTH, Lund University, Box 118, S-221 00, Lund, Sweden <sup>10</sup> University of Guelph, Department of Physics, Guelph, Ontario, NIG2WI, Canada

E-mail: suzan@tlabs.ac.za

Abstract. The are only two nuclei in which double beta decay to excited states in nuclei have been measured. Namely,  $^{100}Mo \rightarrow ^{100}Ru$  first excited  $0^+_2$  state and the  $^{150}Nd \rightarrow ^{150}Sm$ first excited  $0^+_2$  state. These are very useful in giving information about the nature of the neutrino (Dirac or Majorana) and the ordering of the masses. There is not enough knowledge on the microscopic structure of the  $0_1^+$  and  $0_2^+$  in <sup>150</sup>Sm. In transitional N = 88 nuclei strong E1 transitions have previously been observed at medium spins between the yrast and lowest negative parity bands. We have studied the detailed spectroscopy of <sup>150</sup>Sm and <sup>152</sup>Gd[1] isotones using the AFRODITE and JUROGAM spectrometer arrays following  $(\alpha, xn)$  reactions. We observe very intense E1 transitions between the excited  $K^{\pi} = 0^{+}_{2}$  bands and the lowest negative parity bands in both nuclei. With recent questioning of the nature of collective beta vibrations [2, 3, 4] in N = 88 and 90 nuclei, it is clear that understanding the microscopic detail of the structure of these states in nuclei in this range is most crucial. We think that exploring E1 transitions between bands could prove to be a very powerful tool in understanding the structure of negative-parity bands and their relationship to positive-parity bands. Directional Correlations from Oriented states (DCO) and Polarization Anisotropy for these new E1 transitions found are presented. A comparison with the actinide nucleus <sup>220</sup>Ra is made.

## 1. Introduction

The structure of the transitional nuclei near neutron numbers N = 88 and N = 90, where the nuclear shape is changing from spherical to quadrupole deformed, still pose a great challenge having many competing theoretical models with varying degrees of successs. A new perspective

to the understanding of the structure of the N = 88 nucleus <sup>150</sup>Sm is brought by the proposition [2, 3, 4] that the low-lying first excited  $0^+$  states in nuclei in this mass region are not the traditional  $\beta$ -vibrations, postulated by Nobel prize winners Bohr and Mottelson [5], but constitute a second vacuum coexisting with the ground state vacuum. Other interpretations of pairing isomers have also been made [6], and have also been subsequently questioned [7]. We have shown [2, 3] that a large component of the microscopic configuration in nuclei in the region N = 88 and 90 is a pair of neutrons in the  $[505]\frac{11}{2}$  orbit from the  $h_{11}$  shell that is extruded to the fermi surface by the onset of deformation. This is the case for  ${}^{150}$ Sm. The role of pairing is playing a very major role in the structure of these states, and it will be useful to measure the pairing component of the proton for these states and find out where the major part of the proton two particle-two hole (2p-2h) states lie. Previously the nucleus <sup>150</sup>Sm with two fewer protons than <sup>152</sup>Gd has been alleged to have a static octupole deformation in its ground state band above spin I = 8 [8]. A subsequent experiment [9] has a different decay scheme suggesting that the octupole deformation is destroyed at higher spins. A review [10] of experimental E3 strengths finds that these peak at proton number Z = 62 and number N = 88. Similarly it is known that the E0 strengths in  $^{150}$ Sm are considerable [11, 12]. We discuss our observations based on the conjection [13] that the first excited  $0^+$  states in some nuclei have a static octupole deformation while the ground state remains with only a quadrupole deformation. We have made extensive spectroscopic measurements in the isotones <sup>150</sup>Sm and <sup>152</sup>Gd using modern spectrometers as mentioned before. We report here on the observation of E1 transitions in these nuclei from bands built on the first excited  $0^+_2$  states to the lowest negative parity bands  $(K^{\pi} = 0^{-}, \text{ octupole band})$ 

### 2. EXPERIMENTAL DETAILS AND RESULTS

We have studied the nucleus <sup>152</sup>Gd using the <sup>152</sup>Sm( $\alpha$ , 4n)<sup>152</sup>Gd reaction at 45 MeV at iThemba LABS employing the escape suppressed  $\gamma$ -ray spectrometer array AFRODITE [1]. The high spin states of <sup>150</sup>Sm were studied at iThemba LABS national laboratory, using the AFRODITE spectrometer array comprising 9 HpGe clover detectors 5 at 90° and 4 at 135° following the <sup>136</sup>Xe(<sup>18</sup>O, 4n)<sup>150</sup>Sm reaction at 75 MeV using a homogeneous cryogenic frozen <sup>136</sup>Xe target with a thickness of about 1.47 mg/cm<sup>2</sup>, backed by a 1 mg/cm<sup>2</sup> layer of <sup>197</sup>Au, subjected to a vacuum of 10<sup>-5</sup> mbar, is kept solid at a temperature of 55K cooled with a compact solid nitrogen sublimation system. A total of about 5×10<sup>8</sup> events were accumulated. The low spin states of <sup>150</sup>Sm were populated via <sup>148</sup>Nd( $\alpha$ , 2n)<sup>150</sup>Sm reaction at 25 MeV, a self-supporting target of 5 mg/cm<sup>2</sup> and the escape suppressed spectrometer array comprising of 24 clover and 15 tapered HPGe detectors in Bismuth Germanate shields. An equivalent of 2×10<sup>9</sup> triple  $\gamma\gamma\gamma$ coincidences were arranged into a cube. The data were analysed using the Radware package [14].

In order to firmly assign spins and parities to transitions in the decay scheme, we extracted gamma-ray multipolarities by using the method of Directional Correlation from Oriented states DCO [15] and Linear Polarisation Anisotropy (LPA) [16]. Results showing measurements for the new E1 transitions in the two isotones <sup>150</sup>Sm and <sup>152</sup>Gd are recorded in Table 1 and Table 2 respectively. From the <sup>136</sup>Xe(<sup>18</sup>O, 4n)<sup>150</sup>Sm reaction, the ground state band, band 1 is now known to  $24\hbar$ . The  $\beta$ -band 2 was only known up to  $6\hbar$  and it has been extended to an impressive  $12\hbar$  with three linking; two to the ground state and one to the octupole band 4. The positive parity band 3 has previously been known from the band-head at  $14\hbar$ , and now our results allowed us to get a lower band-head at  $12\hbar$ . A new transition has been observed in band 5 linking it to the octupole band. Band 6 has been previously known [17] but its spin and parity was uncertain, and our results allowed us to make a firm assignment of its spin and parity: Two new levels at  $20\hbar$  (5920.1 keV) and  $10\hbar$  (3120.7 keV) have been added to this band with a new transition linking it to the octupole band. The results are shown in Fig. 1 with new  $\gamma$ -rays in red. Partial



Figure 1. Level scheme of  $^{150}$ Sm deduced from our  $^{136}$ Xe $(^{18}$ O, 4n $)^{150}$ Sm data.

decay schemes for <sup>152</sup>Gd and <sup>150</sup>Sm are shown in Fig. 3 and Fig. 2 respectively for the ground, first excited  $0_2^+$  and the  $K^{\pi} = 0^-$  band.



Figure 2. Partial level scheme of  $^{150}$ Sm showing the new E1 transitions connecting the  $0_2^+$  and the octupole band from our  $^{148}$ Nd $(\alpha, 2n)^{150}$ Sm data.

#### 3. Discussion

The decay by E1 transitions in <sup>150</sup>Sm have been observed [8, 9] both ways between the positive parity yrast states, at  $10^+$  and above, and the negative parity band. It was conjectured that the yrast states were associated with a static octupole deformation at  $10^+$  and above. Recent measurements [18] of the double  $\beta$  decay of <sup>150</sup>Nd to the first excited  $0_2^+$  state in <sup>150</sup>Sm are a strong incentive to understand the exact structure of these  $0_2^+$  states and their ground  $0_1^+$  states. We discuss our findings in terms of the actinide nucleus <sup>220</sup>Ra [19] where it is assumed that the



artial scheme of  $^{152}$ Gd showing the new E1 transitions connecting the  $0^+_2$ and the octupole our  $^{152}Sm(\alpha, 4n)^{152}Gd$ 

Table 1. Angular-intensity ratios, polarization anisotropy, spin and parity assignments for E1 transitions between the  $0^+_2$  and octupole bands in <sup>150</sup>Sm. The )<sup>a</sup> represent that there was not enough statistics to do the desired measurement. The \* on the  $\gamma$ -rays represent that their  $R_{DCO}$ ratio what measured gating on E1 transitions, and the rest were gated on E2 transitions.

| $E\gamma ~(keV)$ | $R_{DCO}$           | $A_P$              | Assignment              |
|------------------|---------------------|--------------------|-------------------------|
| $377.7^*$        | $0.639 {\pm} 0.262$ | $)^{a}$            | $4^+ \rightarrow 3^-$   |
| 464.2            | $1.662 {\pm} 0.029$ | $0.0446{\pm}0.016$ | $6^+ \rightarrow 5^-$   |
| 481.8            | $1.55 {\pm} 0.02$   | $0.0456{\pm}0.007$ | $8^+ \rightarrow 7^-$   |
| 513.6            | $)^{a}$             | $)^{a}$            | $10^+ \rightarrow 9^-$  |
| $562.50^{*}$     | $1.101 {\pm} 0.075$ | $)^{\mathrm{a}}$   | $12^+ \rightarrow 11^-$ |

Table 2. Angular-intensity ratios, polarization anisotropy, spin and parity assignments for E1 transitions between the first excited  $0^+$  states and octupole bands in  $^{152}$ Gd. The )<sup>a</sup> represent that there was not enough statistics to do the desired measurement. The \* on the  $\gamma$ -rays represent that their  $R_{DCO}$  ratio what measured gating on E1 transitions.

| $E\gamma ~(keV)$ | $R_{DCO}$        | $A_P$            | Assignment             |
|------------------|------------------|------------------|------------------------|
| $160.4^*$        | $)^{\mathrm{a}}$ | $)^{\mathrm{a}}$ | $4^+ \rightarrow 3^-$  |
| $199.1^*$        | $0.80{\pm}0.06$  | $0.06{\pm}0.07$  | $6^+ \rightarrow 5^-$  |
| $260.1^*$        | $0.95{\pm}0.07$  | $0.03{\pm}0.07$  | $8^+ \rightarrow 7^-$  |
| $361.1^*$        | $1.09{\pm}0.06$  | $0.01{\pm}0.02$  | $10^+ \rightarrow 9^-$ |

quadrupole deformed nucleus is a rigid rotor with moment of inertia *j*, and the octupole vibration is harmonic with frequency  $\Omega$ , and there are no interactions between the octupole phonons and the quadrupole deformed potential of the nucleus. Fig. 4 shows the energy difference  $\Delta E(I)$ between the  $0^+_2$  band ( $\pi = +$ ) and octupole ( $\pi = -$ ) bands in <sup>150</sup>Sm, <sup>152</sup>Gd and <sup>220</sup>Ra. As it can be seen the two sequences do not merge but they cross. Fig. 5 and Fig. 6 display the aligned angular momentum  $I_x$  as a function of the rotational frequency  $\omega$ , which is the slope of E(I). The  $\pi = -$  sequence for both <sup>150</sup>Sm and <sup>152</sup>Gd starts at  $\approx 5\hbar$  more angular momentum than the ground and first excited  $0^+_2 \pi = +$  bands. However at higher values of  $\omega$  the  $\pi = +$  ground band



Figure 4. Energy difference  $\triangle E(I) = E_{-}(I) - (E_{+}(I+1) + E_{+}(I-1))/2)$  between the positive and negative parity states in <sup>150</sup>Sm, <sup>152</sup>Gd and <sup>220</sup>Ba.

Figure 5. Angular momentum as a function of the angular frequency of the two band sequences in  $^{150}$ Sm.

Figure 6. Angular momentum as a function of the angular frequency of the two band sequences in  $^{152}$ Gd.

gains more alignment. Another indication of the condensation is the slow growth of  $\omega$  above 0.25 MeV, specifically t for the  $\pi = +$  zero phonon band. The strong octupole correlations of rotational bands observed in other mass regions can also be interpreted as phonon condensation [19]. We therefore propose the same for the nuclei in the rare earth regions with N = 88 and N = 90.

#### 4. Conclusion

High-statics experiments with the AFRODITE and JUROGAM spectrometer arrays have unearthed new E1 structures in <sup>150</sup>Sm and <sup>152</sup>Gd at low and high spin regimes. A band built on the low-lying second excited  $0^+$  state in <sup>150</sup>Sm has been established to an impressive  $12^+$  with new E1 transitions decaying to the low-lying negative parity band ( $K^{\pi} = 0^-$ ). In the isotone <sup>152</sup>Gd the same band has also been established to  $10^+$  showing the same behaviour. Following [19] we conclude that the interaction between the  $0^+$  and the  $0^-$  states is the condensation of rotational-aligned octupole phonons as seen in the actinide nucleus <sup>220</sup>Ra.

#### 5. Acknowledgements

The authors acknowledge the Ithemba LABS SSC operators, JYFL staff for the beam support and considerable help. We would also like to thank Mark Riley of the Florida state University USA for supplying the <sup>148</sup>Nd target. This work would not have been successful without the funds from the National Research Foundation (NRF) of South Africa.

#### References

- S. P. Bvumbi. Spin and parity assingment in <sup>152</sup>Gd investigating octupole structures. MSc Thesis, University of the Western Cape, 2009.
- [2] J. F. Sharpey-Schafer, R. A. Bark, S. P. Bvumbi, E. A. Lawrie, J. J. Lawrie, T. E. Madiba, S. N. T. Majola, A. Minkova, S. M. Mullins, P. Papka, D. G. Roux, and J. Timar. A double vacuum, configuration dependent pairing and lack of β-vibrations in transitional nuclei: Band structure of N = 88 to N = 90 nuclei. Nucl. Phys. A, 834:45c, 2010.
- J. F. Sharpey-Schafer, T. E. Madiba, S. P. Bvumbi, E. A. Lawrie, J. J. Lawrie, A. Minkova, S. M. Mullins, P. Papka, D. G. Roux, and J. Timar. Blocking of coupling to the 0<sup>+</sup><sub>2</sub> excitation in <sup>154</sup>Gd by the [505]<sup>11/2</sup> neutron in <sup>155</sup>Gd. *Eur. Phys. J. A*, 47:6, 2011.
- [4] J. F. Sharpey-Schafer, S. M. Mullins, R. A. Bark, J. Kau, F. Komati, E. A. Lawrie, J. J. Lawrie, T. E. Madiba, P. Maine, A. Minkova, S. T. H. Murray, N. J. Ncapayi, and P. A. Vymers. Congruent band structures in <sup>154</sup>Gd: Configuration dependent pairing, a double vacuum and lack of β-vibrations. *Eur. Phys. J. A*, 47:5, 2011.
- [5] A. Bohr and B. R. Mottelson. Nuclear Structure, Vol. II. Singapore: World Scientific, 1998.
- [6] I. Ragnarsson and R. A. Broglia. Shapes and shells in nuclear structure. Nucl. Phys. A, 263:315, 1976.
- [7] P. E. Garrett. Characterization of the  $\beta$  vibration and  $0_2^+$  states in deformed nuclei. J. Phys. G, 27:R1, 2001.
- [8] W. Urban, R. M. Lieder, W. Gast, G. Hebbinghaus, A. Kramer-Flecken, K. P. Blume, and H. Hubel. Evidence for coexistence of reflection asymmetric and symmetric shapes in <sup>150</sup>Sm. *Phys. Lett. B*, 185:331, 1987.
- [9] W. Urban, J. C. Bacelar, and J. Nyberg. Fast nuclear rotation and octupole deformation. ACTA, Physica Pol. B, 32:2527, 2001.
- [10] R. H. Spear and W. N. Catford. Information on octupole deformation from the systematics of  $b(E_3; 0_1^+ \rightarrow 3_1^-)$  values. *Phys. Rev. C*, 41:R1351, 1990.
- [11] A. Passoja, J. Kantele, M. Luontama, R. Julin, E. Hammaren, P. O. Lipas, and P. Toivonen. Electromagnetic decay of 0<sup>+</sup><sub>2</sub> and 0<sup>+</sup><sub>3</sub> states in the N = 88-90 of <sup>150,152</sup>Sm. J. Phys. G, 12:1047, 1986.
- [12] J. L. Wood, Z. F. Zganjar, C. De Coster, and K. Heyde. Electric monopole transitions from low energy excitations in nuclei. Nucl. Phys. A, 651:323, 1999.
- [13] R. R. Chasman. Octupole-octupole residual interactions and low-lying 0<sup>+</sup> excited states in the isotopes <sup>232</sup>U, <sup>234</sup>U, and <sup>236</sup>U. Phys. Rev. Lett., 42:630, 1979.
- [14] D. C. Radford. Escl8r and levit8r: Software for interactive graphical analysis of HPGe coincidence data sets. Nucl. Instr. Methods Phys. Res. Sect. A, 361:297, 1995.
- [15] K. S. Krane, R. M. Steffen, and R. M. Wheeler. γ-ray angular distributions and correlations. Nucl. Data Tables A, 11:351, 1973.
- [16] P. J. Twin. γ-ray angular distributions and linear polarizations. Nucl. Instr. Methods, 106:481, 1973.
- [17] P. A. Aguer, C. F. Liang, J. Libert, P. Paris, A. Peghaire, A. Charvet, R. Duffait, and G. Marguier. The decay of 80s <sup>156</sup>Tm. Nucl. Phys. A, 252:293, 1975.
- [18] A. S. Barabash, Ph. Hubert, A. Nachab, and V. I. Umatov. Investigation of  $\beta\beta$  decay in <sup>150</sup>Nd and <sup>148</sup>Nd to the excited states of daughter nuclei. *Phys. Rev. C*, 79:045501, Apr 2009.
- [19] S. Frauendorf. Heart-shaped nuclei: Condensation of rotational-aligned octupole phonons. *Phys. Rev. C*, 77:021304(R), 2008.
- [20] Z. Sujkowski, D. Chmielewska, M. J. A. De Voigt, J. F. W. Jansen, and O. Scholten. positive and negativeparity yrast bands in the transitional nucleide <sup>150</sup>Sm and the interacting boson approximation. Nucl. Phys. A, 291:365–385, 1977.
- [21] R. K. Sheline. Character of the low-lying 0<sup>-</sup> and 0<sup>+</sup> states in the even Rn, Ra, Th, U, and Pu isotopes. *Phys. Rev. C*, 21:1660, 1980.
- [22] J. M. Rees, E. S. Paul, M. A. Riley, J. Simpson, A. D. Ayangeakaa, H. C. Boston, M. P. Carpenter, C. J. Chiara, U. Garg, D. J. Hartley, R. V. F. Janssens, D. S. Judson, F. G. Kondev, T. Lauritsen, N. M. Lumley, J. Matta, P. J. Nolan, J. Ollier, M. Petri, J. P. Revill, L. L. Riedinger, S. V. Rigby, C. Unsworth, X. Wang, and S. Zhu. Non-yrast positive-parity structures in the γ-soft nucleus <sup>156</sup>Er. Phys. Rev. C, 83:044314, 2011.
- [23] R. Bengtsson and S. Frauendorf. Experimental alignments. Nucl. Phys. A, 327:139, 1979.
- [24] R. Ibbotson, C. A. White, T. Czosnyka, P. A. Butler, N. Clarkson, D. Cline, R. A. Cunningham, M. Devlin, K. G. Helmer, T. H. Hoare, J. R. Hughes, G. D. Jones, A. E. Kavka, B. Kotlinski, R. J. Poynter, P. Regan, E. G. Vogt, R. Wadsworth, D. L. Watson, and C. Y. Wu. Octupole collectivity in the ground band of <sup>148</sup>Nd. Phys. Rev. Lett. 13, 71:1990, 1993.