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Abstract. Relativistic hydrodynamics has been the tool of choice to simulate the dynamics of
the quark-gluon plasma produced in heavy-ion collisions. Despite the success of hydrodynamics,
it has several shortcomings stemming from the fact that it assumes a system close to equilibrium.
An alternative to hydrodynamics is solving the Boltzmann equation, which describes the
evolution of the full distribution function of the system without the close to equilibrium
requirement. The Boltzmann equation, however, has hitherto proved computationally
intractable. By using a novel algorithm, and leveraging the computational power of graphics
processing units, we numerically integrate the Boltzmann equation in the relaxation time
approximation.

1. Introduction
Recent heavy-ion experiments have confirmed the existence of a deconfined plasma of quarks
and gluons, the Quark Gluon Plasma (QGP) [1, 2]. This provides an excellent experimental
opportunity to study the dynamics of the strong nuclear force, which due to confinement, has
historically proved challenging.

The phenomenology of the QGP has most extensively been studied using the methods of
viscous hydrodynamics [3]. Hydrodynamics, however, has limitations, most notably, it only
tracks the evolution of the energy-momentum tensor, and not the more microscopic, distribution
function.

Thus hydrodynamics would be unable to predict certain phenomena, for example, the
possible formation of a Bose-Einstein condensate, as has been suggested by [4]. Given these
considerations, we would like to go beyond hydrodynamics and have access to the full distribution
function. In order to study the evolution of the distribution function, we would have to solve
the Boltzmann equation, given by

d

dt
f(x, p, t) = C[f(p, t)]− v∇f(x, p, t), (1)

where f(x, p, t) is the distribution function evaluated at the point x, momentum p at time t. The
v∇f(x, p, t) term describes the flow of matter through space. C[f(p), t] is the so-called collision
term which is a functional that describes the interaction between different particles, and in
principle requires us to determine interaction probabilities using Quantum Chromodynamics
(QCD), as our goal is to simulate gluon interactions.



There have been attempts to solve the Boltzmann equation, both analytically and numerically
[5, 6, 7]. These attempts have, however, assumed highly symmetric initial conditions, typically
assuming exact boost-invariance and cylindrical symmetry. We, however, know that boost-
invariance is just an approximate symmetry, and we would want to consider deviations from
exact boost-invariance. We also know that they are not cylindrically symmetric [8].

Our goal will be to solve the Boltzmann equation with these symmetry requirements relaxed.
We will, however, make a simplifying assumption regarding the collision term, instead of using

a highly non-trivial collision term derived from QCD, we will rely on a simpler phenomenological
model called the relaxation time approximation.

We will furthermore exclusively consider a plasma of gluons at this stage, neglecting quarks
as they cannot participate in Bose-Einstein condensation.

2. The Relaxation Time approximation
The relaxation time approximation (RTA) is a staple of statistical physics and is conceptually
very simple. We know by the Boltzmann H-theorem that the Boltzmann equation will,
regardless of the details of the collision term, asymptotically drive the system into its equilibrium
distribution. The RTA simply assumes that the system will asymptotically approach equilibrium
with some characteristic relaxation time τrel.

The relativistically covariant form of the Boltzmann equation under relaxation time
approximation, initially described here [9], is given by the following

pα∂αf(x, p, t) = pαuα
feq(x, p ;T, u, µ)− f(x, p, t)

τrel
. (2)

where feq is the appropriate equilibrium distribution function for the species of particle under
investigation, in our case, we will consider the Bose-Einstein equilibrium distribution

feq(x, p ;T, u, µ) = (exp((pαuα − µ)/T )− 1)−1 . (3)

The spatial dependence of the distribution function is only present in the spatial dependence
of the parameters T ,uα and µ.

Energy-momentum conservation is ensured by the requirement that the 4-divergence of the
energy-momentum tensor (Tαβ) vanishes,

∂αT
αβ = 0, (4)

which under the RTA simplifies to

uαT
αβ
[f ] = uαT

αβ
eq . (5)

If we define the rest frame as the frame in which the net energy flux vanishes, also called the
Landau rest frame (LRF), this becomes

T β[f ] α u
α = Eequβ. (6)

The (only) positive eigenvalue (Eeq) of this eigenvalue equation corresponds to the energy
density in the LRF, and the associated eigenvector is the flow velocity as in eq (3). We can,
optionally, enforce particle number conservation as well, this would generate the additional
requirement,

∂αJ
α = 0, (7)

where Jα is the 4-current density. Under the RTA, this condition becomes,

uαJ
α = Neq (8)



where Neq is the local number density in the Landau rest frame. Using these we can determine
the local temperature and chemical potential, using

Eeq =
3

π2
Li4

(
exp(

µ

T
)

)
T 4 (9)

Neq =
1

π2
Li3

(
exp(

µ

T
)

)
T 3, (10)

where Lin denotes the polylogarithm of order n.
Thus the parameters T , uα and µ, the temperature, fluid flow velocity, and chemical potential

respectively, are constrained and the only free parameter in the model is the relaxation time
τrel.

Even though the Boltzmann equation under the relaxation time approximation is conceptually
very simple, the temperature, flow velocity and, possibly, chemical potential are dynamic.
The dynamic nature of these parameters have, thus far, rendered an exact analytic solution
intractable without assuming a highly symmetric setting.

Thus we will resort to numerical methods to make headway.

3. Numerical Implementation
We want to simulate the evolution of the distribution function on a discretised phase-space. After
setting up an initial grid of points, we perform free-streaming and relaxation steps independently.
Free-streaming is performed by propagating the grid forward in time using the characteristic
lines of the advection equation. In order to perform the relaxation step, we need access to the
equilibrium parameters. We use a Gauss-Legendre integration scheme to calculate the energy-
momentum tensor which is required to determine the equilibrium parameters. Which we can
then use to update the function values using the right-hand side of eq (2).

There are a few significant numerical hurdles that need to be overcome.
Firstly, since we in general, do not want to be restricted to considering highly symmetric

initial conditions (as other explorations of the Boltzmann equation tend to assume), we need to
solve the Boltzmann equation in the full 6-dimensional phase space. The consequence of this
high dimensionality is that the number of points that we a required to simulate to obtain a
particular resolution of the distribution function scales rapidly with the size of the system. This
is compounded by the fact that the system is rapidly expanding, especially in the longitudinal
direction.

Another challenge is that we also have a large range of relevant momentum scales present
in the problem. Typical initial conditions would be at least approximately boost-invariant,
which would imply that the longitudinal momentum scale on which the distribution function
has support grows exponentially with increasing rapidities. Thus for an accurate simulation, we
require an appropriate resolution across all the relevant momentum scales.

Furthermore, due to time dilation, parts of the system at different rapidities evolve at possibly
very different rates (in the lab frame). The consequence is that some parts of the system will
conclude their evolution (i.e. thermalise) long before others, which is inefficient.

It will be convenient to choose the following set of coordinates,

t = τ cosh η (11)

z = τ sinh η (12)

k0 = k⊥coshY (13)

kz = k⊥sinhY. (14)



As is convention, z denotes the axis parallel to the beam. We will henceforth refer to these
coordinates as eigentime (τ), spacetime-rapidity (η) and momentum-rapidity (Y ). In these
coordinates, the Boltzmann equation reads,(

∂

∂τ
+

1

τ
vη

∂

∂η
+ v⊥

∂

∂x⊥

)
f =

kµu
µ

k⊥cosh(Y − η)

f − f∞
τrel

. (15)

This set of coordinate transformations provide several benefits.
In the case of exact boost-invariance, and zero transverse flow velocity, the eigentime is

equivalent to the local proper time, which is the natural timescale on which all parts of the
system will evolve. Since physically relevant initial conditions must be approximately boost
invariant, and the longitudinal flow velocity, in general, will be much larger than the transverse
flow velocity, and thus the eigentime is still a good approximation of the local proper time.

Instead of continually expanding in the longitudinal direction, requiring an ever larger grid
to accommodate the distribution function, the long term evolution is such that as τ → ∞, we
have η → Y , effectively a compression of the relevant phase space. Thus if the initial condition
can be accommodated on the grid, the distribution function can be accommodated for all future
times.

Due to locality, each cell can be independently updated, this allows us to develop an algorithm
that computes these updates in parallel. This allows us to use Graphical Processing Units
(GPUs) which have the ability to provide a large amount of computational power compared to
traditional CPUs, as long as the algorithm used can be run in parallel.

4. Results
Using the RTA approximation and assuming boost invariance and cylindrical symmetry, we
predict the temperature evolution in both the free-streaming (τrel → ∞) and hydrodynamic
(τrel → 0) limits [7].

In particular in the free-streaming limit

(
T (τ)

T (τ0)

)
=

(
τ

τ0

)− 1
4

, (16)

and for the hydrodynamic limit, (
T (τ)

T (τ0)

)
=

(
τ

τ0

)− 1
3

. (17)
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Figure 1: We compare the evolution of the temperature at mid rapidity of various relaxation
times (dotted lines) to the hydrodynamic limit (solid green line), and the analytical free-
streaming limit (solid red line).

We see that we can not only reproduce the limiting cases but also produce reasonable results
for intermediate values of τrel.

This shows that our simulation is working as intended, and we can begin to investigate more
interesting phenomena.

5. Conclusion and Outlook
In this work we have detailed our approach to numerically solving the Boltzmann equation under
the relaxation time approximation, and showed preliminary success in reproducing analytical
limits.

We hope to begin applying this new numerical tool to experimentally relevant initial
conditions to investigate phenomena such as the possibility of Bose-Einstein condensation.

A natural extension of the project would be to consider more physically realistic collision
terms. The modular nature of our software would allow us to rapidly prototype these collision
terms.
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