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Abstract. The thermal conductivity of hadronic matter is studied using a microscopic
transport model, which will be used to simulate ultra-relativistic heavy ion collisions at different
energy densities ε, namely the Ultra-relativistic Quantum Molecular Dynamics (UrQMD). The
molecular dynamics simulation is performed for a system of zero baryon number density and
light meson species (π, ρ and K) in a box with periodic boundary conditions. The equilibrium
state is investigated by studying the chemical equilibrium and the thermal equilibrium of the
system. The particle multiplicity equilibrates with time, and the energy spectra of different
light mesons species have the same slopes and common temperatures when thermal equilibrium
is reached. The thermal conductivity transport coefficient is calculated from the heat current -
current correlations using the Green-Kubo relations.

1. Introduction
A large number of studies in heavy ion physics and high energy physics have been done using
the results from the Relativistic Heavy Ion Collider (RHIC). Now with the restart of the
Large Hadron Collider (LHC) physics programme, the field of high energy nuclear physics, and
especially heavy ion physics, has gone into a new era. It is now possible to explore the properties
of Quantum-Chromo-Dynamics (QCD) at unprecedented particle densities and temperatures,
and at much higher energies than that produced at RHIC, from

√
s = 200 GeV to

√
s = 14 TeV

at the LHC [1].
High energy heavy ion reactions are studied experimentally and theoretically to obtain

information about the properties of nuclear matter under extreme conditions at high densities
and temperatures, as well as about the phase transition to a new state of matter, the quark-
gluon plasma (QGP) [2, 3]. This work reports on a transport coefficient, namely the thermal
conductivity of hadron matter. Other transport coefficients such as shear and bulk viscosity
are well discussed and documented [3, 4], but the study of the thermal conductivity transport
coefficient is poorly documented, especially with the use of UrQMD model to simulate ultra-
relativistic heavy ion collisions. The knowledge of this transport coefficient plays an important
role in the development of a model such as the UrQMD model, and also the development of high
energy heavy ion experiments such as LHC and RHIC.

Equilibration of the system is studied by evaluating particle number densities from chemical
equilibrium, energy spectra as well as the temperatures from thermal equilibrium of different



light meson species in a cubic box, which imposes periodic boundary conditions. The infinite
hadronic matter is modelled by initializing the system with light meson species namely, the
pion (π), the rho (ρ) and the kaon (K). We focus on the hadronic scale temperature (100 MeV
< T < 200 MeV) and zero baryon number density, which are expected to be realized in the
central high energy nuclear collisions [5]. We then change energy density from ε = 0.1 - 2.0
GeV/fm3 and for each energy density we run the system with 200 events while keeping the
volume and baryon number density constant until the equilibrium state is reached. The thermal
conductivity transport coefficient is calculated from the heat current - current correlations using
the Green-Kubo relations.

The rest of the paper is organized as follows: In section 2 we study the description of the
UrQMD model. In section 3 we study equilibration properties of the system. In section 4 we
calculate the thermal conductivity transport coefficient around the equilibrium state through
the UrQMD model using Green-Kubo relations.

2. Short Description of the UrQMD Model
The Ultra-relativistic Quantum Molecular Dynamic model (UrQMD) is a microscopic model
based on a phase space description of nuclear reactions. We use version 3.3 of the UrQMD
model for this study. The UrQMD 3.3 hybrid approach extends previous ansatzes to combine
the hydrodynamic and the transport models for the relativistic energies. The combination of
these approaches into one single framework, it is done for a consistent description of the dynamics

The UrQMD model describes the phenomenology of hadronic interactions at low and
intermediate energies from a few hundreds MeV up to the new LHC energy of

√
s =14 TeV

per nucleon in the centre of mass system [6, 7]. The UrQMD collision term contains 55 different
baryon species and 32 meson species, which are supplemented by their corresponding anti-
particles and all the isospin-projected states [6, 8]. The properties of the baryons and the
baryon-resonances which can be populated in UrQMD can be found in [8], together with their
respective mesons and the meson-resonances. A collision between two hadrons will occur if

dtrans ≤
√
σtot
π
, σtot = σ(

√
s, type), (1)

where dtrans and σtot are the impact parameter and the total cross-section of the two hadrons
respectively [6]. In the UrQMD model, the total cross-section σtot depends on the isospins
of colliding particles, their flavour and the centre-of-mass energy

√
s. More details about the

UrQMD model is presented in [6, 7, 8].

3. Equilibration of Hadronic Matter
To investigate the equilibrition of a system, the UrQMD model is used to simulate the ultra-
relativistic heavy ion collisions. A multi-particle production plays an important role in the
equilibration of the hadronic gas [3]. The cubic box used for this study is initialised according
to the following numbers of baryons and mesons: zero protons, 80 pions, 80 rhos and 80 kaons.
For this study a cubic box with volume V and a baryon number density nB = 0.00 fm−3 is
considered. The energy density ε, volume V and the baryon number density nB in the box are
fixed as input parameters and are conserved throughout the simulation. The energy density is
defined as ε = E

V , where E is the energy of N particles and the three-momenta pi of the particles
in the initial state are randomly distributed in the centre of mass system of the particles as shown
in the equations below.

E =
N∑
i=1

√
m2
i + p2i ,

N∑
i=1

pi = 0. (2)



3.1. Chemical Equilibrium
In this subsection the chemical equilibrium is studied from the particle number densities of
different light meson species in a box with V = 1000 fm3, zero net baryon number density nB
= 0.0 fm−3 at different energy densities using UrQMD box calculations. Figure 1 (a) and (b)
represents the time evolutions of the various meson number densities at ε = 0.3 and 0.4 GeV/fm3

energy densities.
In figures 1 (a) and (b), the meson species indicate that the system does indeed reach

chemical equilibrium. It is observed that the pions have large particle number densities and
the reason could be the decay in the heavier mesons and other particles produced in the system
to form pions. The saturation of the particle number densities indicate the realization of a
local equilibrium. In conclusion, the chemical equilibrium of the system has been reached, as in
both figures the saturation times are the same for all three mesons, regardless of the shape of
each meson. In figure 1 (a) where ε = 0.3 GeV/fm3, the equilibrium time for all meson species
is around t = 22 fm/c and for figure 1 (b) at a higher energy density of ε = 0.4 GeV/fm3,
the equilibrium time is observed to have increased to t = 32 fm/c. These results show that
an increase in energy density influences the particle multiplicity inside the periodic box, which
affect the equilibration time.

(a) (b)

Figure 1: The time evolution of particle number densities of light meson species (π, ρ and K)
at (a) ε = 0.3 GeV/fm3 and (b) ε = 0.4 GeV/fm3.

3.2. Thermal Equilibrium and Temperature
In this subsection the thermal equilibrium and the temperature from the energy distributions
of different light meson species are studied. The possibility of the thermal equilibrium of the
hadronic matter is studied by examining the energy distribution of the system in a box with
periodic boundary conditions using the UrQMD model. The particle spectra are given by the
momentum distribution as

dNi

d3p
=

dN

4πEpdE
∝ Ce(−βEi). (3)

Figure 2 (a) and (b) represent the time evolutions of energy spectra of different meson
species. The linear lines are fitted using the Boltzmann distribution, which is aproximated
by C exp(−βEi) from Eq. 3, where β = 1/T is the slope parameter of the distribution and Ei
is the energy of particle i. The results are plotted as a function of kinetic energy K = E −m,
so that the horizontal axes for all the particle species coincide [9]. In figure 2 (a) and (b) it is



observed that the slopes of the energy distribution converge to common values of temperatures
at different times above t = 180 fm/c for ε = 0.2 GeV/fm3 and above t = 250 fm/c for ε =
0.3 GeV/fm3. In thermal equilibrium the system is characterized by unique temeperature T
[9]. The thermal temperatures were extracted from the equilibrium state using the Boltzmann
distribution such that T = 118.3 MeV for ε = 0.2 GeV/fm3 and T = 150.1 MeV for ε = 0.3
GeV/fm3.

(a) (b)

Figure 2: The energy distributions of light meson species (π, ρ and K) at (a) ε = 0.2 GeV/fm3

and t = 180 fm/c and (b) ε = 0.3 GeV/fm3 and t = 250 fm/c. The lines are the Boltzmann fit
which gives the extracted temperatures of T = 118.3 MeV for (a) and T = 150.1 MeV for (b).

4. Thermal Conductivity Transport Coefficient
The transport coefficients, such as the thermal conductivity κ and the shear viscosity η,
characterize the dynamics of the fluctuations of the dissipative fluxes in a medium [3]. The
most often used method to investigate these coefficient is either through employing the kinetic
theory or the field theory using the Green-Kubo formula [3].

The knowledge of various transport coefficients is important for the dissipative fluid dynamical
model. One can calculate the coefficient of thermal conductivity from the fluctuation-dissipation
theorem theorem. The fluctuation-dissipation theorem tells us that the thermal conductivity
is given by the heat current-current correlations [10]. Green and Kubo showed that the
transport coefficients like heat conductivity, shear and bulk viscosity can be related to the
correlation functions of the corresponding flux or the tensor in the thermal equilibrium [11].
The Green-Kubo formalism relates linear transport coefficients to near-equilibrium correlations
of dissipative fluxes and treats dissipative fluxes as perturbations to local thermal equilibrium
[12]. The relevant formular for the Green-Kubo relation for thermal conductivity can be written
as [13]

κ =
V

3T 2

∫ ∞
0
〈qi (0) .qi (t)〉 dt. (4)

In Eq. (4) the brackets <...> stand for the equilibrium average, and no summation is implied
over the repeated indices [3, 13]. κ is the thermal conductivity. The vector qi is the Eckart’s
heat current along the i = x, y and z axes which is defined as

qi =
1

V

N∑
k=1

pi
(

p2

p2
0

)
, (5)



where pi is the momentum along the i = x, y and z axes, and p2 = p2
0 − p2

x − p2
y − p2

z, which
can be extracted from the UrQMD model output file. If the evolution of the fluctuations of the
fluxes is described by the Maxwell-Cattaneo equation [13]. We adopt a relativistic microscopic
model, namely the UrQMD [8] and perform molecular-dynamics for a hadron gas of mesons in
a box to compute the thermal conductivity coefficient of the hadron gas.
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Figure 3: (a) The square expectation value of the heat current and (b) the thermal conductivity
of the hadronic gas as a function of temperature.
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Figure 4: The relaxation time for the heat conductivity of a the hadronic gas as a function of
temperature.

Figure 3 (a) shows the square expectation of the heat current results obtained from the
UrQMD model. The heat current increases with increase in temperature. These results are in
good comparison with those obtained in [10], where a different model named URASIMA was
used. The UrQMD square expectation of heat current is much smaller than that obtained in
[10]. The reason might be that for this study we considered a situation with only meson species
and zero baryon number.

Figure 3 (b) shows the thermal conductivity κ of a hadronic gas, which increases with an
increase in temperature. Saturation is reached below T = 0.17 GeV, where the hadronic gas
with zero baryon number density is expected to be realized in the central high energy nuclear
collisions [3]. According to our simulation, we observed a strong temperature dependence. The
temperature behavior of the thermal conductvity is κ ∼ T 2.88. The temperature dependence of
thermal conductivity in this study is greater (T 2.88 > T 2) than the one reported by [14], where
the author used Effective Field Theory, and it is less (T 2.88 < T 5) than the one reported by [10],



where the author used a different simulation model called URASIMA and a different system
which includes the baryon number densities.

Due to the smaller number of studies done on the thermal conductivity coefficient, it is
difficult to make a proper conclusion from the results obtained, but from a comparison with the
few related studies, one can agree that the results are in good comparison with those reported by
[10]. At the moment it is not very clear where the large fluctuation around T = 160 MeV come
from in the above figures. Thus a similar study will be done in the future which will include
the baryon number density and different mesons species at higher energies and large number
of events in order to check if one of these factors does play a role for this large fluctuation.
Figure 4 shows the relaxation time for the heat flux of a hot hadronic gas as a function of the
temperature calculated from the UrQMD model by fitting the heat correlation functions. The
heat relaxation time decreases with an increase in temperature similarly to the one reported in
[3, 10].

5. Conclusion
From the presented results, it can be concluded that it is possible to calculate thermal
conductivity transport coefficient using the UrQMD model. More study is still required for
a better understanding of the results and the coefficient. The future studies will focus on how
the thermal conductivity transport coefficient is affected by adding different numbers of meson
species in the box, including baryon number density, in order to compare with other studies
such as that reported by [10, 15], as well as to compare to those who used different models and
statistical approach [14, 16].
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