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Theory Interpolation

Variometers and Magnetometers
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Theory SECS

SECS - Spherical Elementary Current Systems

SECS is one of the most physically realistic magnetic field interpolation
schemes - it tries to replicate both the internal (induction) and external
(ionospheric and magnetospheric) currents in terms of equivalent currents.
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Theory SECS

SECS - Algorithm Flow

1 - Set up grid of elementary current poles (say n poles). These poles are
collected into a vector I.

2 - Use measured magnetic field data (say m stations) to constrain
elementary currents. Usually m < n. These stations are collected into
a vector B.

3 - Set up transfer function matrix T , such that B = T · I. The
dimensions of T is m × n

4 - Calculate components of I by using SVD to get T−1, i.e. I = T−1 · B.
5 - Use the elementary current grid to interpolate magnetic field B′ to

any other point of of interest, i.e. B′ = T ′ · I.

The internal component of the measured
geomagnetic field needs to be subtracted!
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Theory SECS

SECS - Planar Approximation
Given a grid with n current elements and assuming m magnetometers, the

following matrix equation can be set up for the calculation,

Bx,y :1

...

Bx,y :m

 =



Tx,y :11 · · · Tx,y :1n

...
. . .

...

Tx,y :m1 · · · Tx,y :mn





I1

...

In


where,

Tx,y :ij = µ0

4πr

(
1− h√

r 2
ij + h2

)
.

There are a number of factors affecting this planar approximation including an
small angle assumption and the resolution of stations.
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Theory dSECS

dSECS - Interpolating dB

Although variometers are not absolute, they can very accurately measure
the change in the magnetic field, i.e. ∆B = B(ti ) − B(ti−1).

Since the SECS method is entirely linear, ∆B can be used in the same way
as B (T is purely a spatial constant). The only difference is that I
becomes ∆I in this scheme.

B(ti ) − B(ti−1) = T · I(ti ) − T · I(ti−1)
= T · (I(ti ) − I(ti−1))

∆B = T · ∆I

With more variometers than absolute magnetometers, the confidence in
∆B interpolation is much higher than that for B. ∆B is also what is

typically used for GIC studies.
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Theory dSECS

Merging SECS and dSECS
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Theory dSECS

Merging SECS and dSECS
We can now use the greater amount of information about ∆B to improve the
interpolation of B. Given a set of perturbations ε, the two results can be equated,

∆B1 = (B2 + ε2) − (B1 + ε1)
· · ·

∆BN = (BN+1 + εN+1) − (BN + εN).

This can then be rewritten in a matrix equation of the form A~x = ~b,

N

N+1−−−−−−−−−−−−−−−−→y


−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −1 1




ε1
ε2

...

εN+1

 =


∆B1 + B1 − B2
∆B2 + B2 − B3

...
∆BN + BN − BN+1

 .
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Theory Results

KMH Bx
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Theory Results

KMH By
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Theory Results

KMH Btot
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Theory Results

KMH Bx - All Storms
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Theory Results

KMH By - All Storms
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Theory Results

KMH Btot - All Storms
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Conclusion

Take Home Points...

1. Integrating variometers into magnetometer networks improve
geomagnetic interpolation, especially during geomagnetic storms.

- This improvement comes at a much reduced cost!

2. Variometers can be used alone in geoelectric field studies.

3. Systematic error is reduced, particularly in By component (which
relates to induction effects).

‘The more the merrier.’
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Questions (Suggestions)?
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SECS - Background Theory

From Helmholtz’s theorem, any current flowing on a surface can be broken
into curl-free (allows current flow in and out of sheet) and divergence-free
(allows current flow on sheet) parts. The divergence-free part is what is
typically measured by ground based magnetometers.

In Earth-centred spherical coordinates (r , θ, φ), the divergence-free current
at a point ~r on the surface Rsurf , θ away from a pole at ~r ′ is,

~Jdf ,i (~r) = Ii
4πRsurf

cot
(
θ

2

)
~eφ =

∫∫
S r̃ · ~∇× ~J(~r ′)dS

4πRsurf
cot
(
θ

2

)
~eφ.



SECS - Planar Approximation

Given a current element of amplitude of I at height h in cylindrical
coordinates ( r =

√
x2 + y2, φ, z ), the surface current density would be,

~Jdf = I/(2πr) ~eφ,

Assuming z is downwards and a harmonic time dependence (i.e. eiωt ),
the electric field resulting from the element would be,

~E = − iωµ0I
4π

√
r 2 + h2 − h

r ~eφ.

The magnetic field would then be,

~B = µ0I
4πr

((
1− h√

r 2 + h2

)
~er +

(
r√

r 2 + h2

)
~ez

)
.



Relevant Stations and Interpolation Grid

- Latitude range:
34.5-18.5◦S

- Longitude range:
16.5-28.0◦E

- Grid dimensions: 13 x 18
- Grid span: 1 214km EW

and 1 781km NS
- Grid spacing: 101km and

104km
- Internal field model:

Enhanced Magnetic Model
(EMM2017)



Analytical Pseudo Inverse

A−1 =


−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
0 0 −1 1 · · · 0

...
...

. . .
. . .

. . .
...

0 0 · · · 0 −1 1


−1

=

N−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

− N
N+1 −N−1

N+1 −N−2
N+1 · · · − 1

N+1
1

N+1 −N−1
N+1 −N−2

N+1 · · · − 1
N+1

1
N+1

2
N+1 −N−2

N+1 · · · − 1
N+1

...
...

. . . . . .
...

1
N+1

2
N+1 · · · − 2

N+1 − 1
N+1

1
N+1

2
N+1 · · · N−1

N+1 − 1
N+1

1
N+1

2
N+1 · · · N−1

N+1
N

N+1



y
N+1



Analytical Pseudo Inverse

AA−1 = 1(N × N)

A−1A =

N+1−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

N
N+1 − 1

N+1 − 1
N+1 · · · − 1

N+1
− 1

N+1
N

N+1 − 1
N+1 · · · − 1

N+1
− 1

N+1 − 1
N+1

N
N+1 · · · − 1

N+1

...
...

. . . . . .
...

− 1
N+1 − 1

N+1 · · · N
N+1 − 1

N+1
− 1

N+1 − 1
N+1 · · · − 1

N+1 − 1
N+1

− 1
N+1 − 1

N+1 · · · − 1
N+1

N
N+1



y
N+1

≈ 1(N + 1 × N + 1) for N � 1
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