# AdS/CFT predictions for correlations, suppression, and flow of heavy flavours at RHIC and LHC

# **R** Hambrock and WA Horowitz

Department of Physics, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

E-mail: roberthambrock@gmail.com, wa.horowitz@uct.ac.za

Abstract. We use two AdS/CFT based energy loss models to compute the suppression, flow, and azimuthal correlations of heavy quarks in heavy ion collisions at RHIC and LHC. The model with a velocity independent diffusion coefficient is in good agreement with B and D meson suppression data up to high  $p_T$ . The partonic azimuthal correlations are compared with those from perturbative QCD based simulations [1]. When restricted to leading order production processes, we find that the strongly coupled correlations of high transverse momentum pairs (> 4GeV) are broadened less efficiently than the corresponding weak coupling based correlations, while low transverse momentum pairs (1 - 4GeV) are broaded with similar efficiency, but with an order of magnitude more particles ending up in this momentum class. We thus propose heavy flavour momentum correlations as a distinguishing observable of weakly- and strongly-coupled energy loss mechanisms.

### 1. Introduction

The quark gluon plasma is of great interest since it represents our first case study of the emergent physics of the non-abelian gauge theory QCD. A key step in understanding this state of matter is identifying its relevant coupling strength. The perturbative techniques of QCD are only adequate in a weakly coupled plasma, with calculations for strongly coupled plasmas constrained to methods like AdS/CFT-based approaches or Resonance Scattering [2]. Both weak and strong coupling based approaches have had their respective successes in the past. For instance, experimental  $R_{AA}^{\pi}$  measurements show surprisingly consistent agreement with predictions from pQCD based models [3], while AdS/CFT based calculations have fared strongly by predicting a global lower bound on the shear viscosity-to-entropy ratio of QGP-like systems of  $\frac{\eta}{s} \sim 0.1$  [4], when taking natural units, which is in line with hydrodynamic inferences from collider data at LHC and at RHIC [5].

Both frameworks show qualitative agreement with  $R_{AA}^D$  [3], suggesting they are attaining sufficient maturity to investigate more differential observables. We will argue that the momentum correlations of heavy quarks constitute a promising candidate as a differentiator between weakly and strongly coupled plasmas.

In [1], the azimuthal correlations of heavy  $q\bar{q}$  pairs in a weakly coupled plasma in Pb+Pb collisions ( $\sqrt{s} = 2.76$ TeV) were studied, both for a model involving purely collisional energy loss and one additionally incorporating radiative corrections. These weak coupling based azimuthal correlations provide a secondary indicator for the momentum correlations of heavy quarks. We will compare these correlations with two different AdS/CFT based energy loss

models, one [6] with a velocity dependent diffusion coefficient and the other [7] with a diffusion coefficient independent of the heavy quark's velocity. Furthermore, we will probe the spectrum of their possible predictions with two plausible [8] 't Hooft coupling constants ( $\lambda_1 = 5.5$  and  $\lambda_2 = 12\pi\alpha_s \approx 11.3$  with  $\alpha_s = 0.3$ ) where for the former, temperature and the Yang-Mills coupling are equated, while for the latter constant, energy density and the coupling are equated.

The calculations will be performed at leading order for the same transverse momentum classes as in [1]. Additionally, we will consider momentum correlations that take initial momentum correlations into account. These will provide evidence that heavy quarks traversing a strongly coupled plasma are more likely to stay correlated in momentum than they would if inside a weakly coupled plasma.

Finally, we will compare our results with heavy flavour measurements from LHC and provide predictions for RHIC.

# 2. Energy Loss Model

## 2.1. Overview

The following will outline our computational procedure and its background. Subsequent to initializing the momenta of heavy quark pairs either to leading order with FONLL [9] or to next-to-leading order with aMC@NLO [10] using Herwig++ [11] for the showering, the production points of the heavy quarks are weighted by the Glauber binary distribution [6]. The particles are propagated through the plasma via the energy loss mechanism described in 2.2 until the temperature in their local fluid cell drops below the  $T_c$  threshold and hadronization is presumed to occur or the maximum time of the VISHNU background [5] has passed. If next-to-leading order initialization has been used, the heavy quarks are now hadronized. Finally, the heavy quarks are binned pairwise according to their relative azimuthal angle and each particle's final three-momentum.

## 2.2. Langevin Energy Loss

The stochastic equation of motion for a heavy quark in the fluid's rest frame is [12]

$$\frac{dp_i}{dt} = -\mu p_i + F_i^L + F_i^T \tag{1}$$

where  $F_i^L$  and  $F_i^T$  are longitudinal and transverse momentum kicks with respect to the quark's direction of propagation and with  $\mu$ , the drag loss coefficient, being given by  $\mu = \pi \sqrt{\lambda} T^2 / 2M_Q$  [13] where  $M_Q$  is the mass of a heavy quark in a plasma of temperature T with 't Hooft coupling constant  $\lambda$ . The correlations of momentum kicks are given by

$$\langle F_i^T(t_1)F_j^T(t_2)\rangle = \kappa_T(\delta i j - \frac{\vec{p}_i \vec{p}_j}{|p|^2})g(t_2 - t_1) \quad (2) \qquad \langle F_i^L(t_1)F_j^L(t_2)\rangle = \kappa_L \frac{p_i p_j}{|p|^2}g(t_2 - t_1) \quad (3)$$

where g is only known numerically [6] and with

$$\kappa_T = \pi \sqrt{\lambda} T^3 \gamma^{1/2} \tag{4} \qquad \kappa_L = \gamma^2 \kappa_T = \pi \sqrt{\lambda} T^3 \gamma^{5/2} \tag{5}$$

$$\hat{q} = \langle p_{\perp}(t)^2 \rangle \lambda \approx \kappa_T t / \lambda = \gamma (2\pi T^3 \sqrt{\lambda}) / v \tag{6}$$

where  $\gamma$  is the speed of the quark. It should be noted that this construction does not obey the fluctuation-dissipation theorem [6]. The computations based on this model will be labeled D(p).

 $\lambda_1 = 5.5$ 



Figure 1:  $\frac{d^2N}{d\phi dp_T}$  of  $b\bar{b}$  pairs for  $p_A = \{2.5, 6.5\}$  GeV at 40-50 centrality for the D(p) model

# 2.3. Development on energy loss model

The problem with the energy loss mechanism described in 2.2 is that since the longitudinal momentum fluctuations grow as  $\gamma^{\frac{5}{2}}$ , our setup breaks down for high momenta, where in a perturbative QCD setting, Brehmstrahlung would restrict the momentum growth of the quark. Via a novel calculation presented in [7, 14, 15], we instead consider a stationary string in  $AdS_d$  hanging into a black hole horizon and calculate  $s^2(t, a, d)$  of the free endpoint. For the the d = 3 result, the average squared distance travelled can be determined analytically for small string lengths, which is identical to the asymptotically late time behavior of a string with arbitrary initial length. We thus find the asymptotically late time behavior of a string in d dimensions by

$$s^{2}(t \gg \beta, a, d) = s_{\text{small}}^{2}(t \gg \beta, a, d)$$
$$= \left(\frac{d-1}{2}\right)^{2} s_{\text{small}}^{2}(t \gg \beta, a, d = 3) = \frac{(d-1)^{2}}{8\pi\sqrt{\lambda}}\beta\left(1 - \frac{a}{2}\right)$$
(7)

where  $\beta = T^{-1}$  and a parametrizes between a heavy quark for a = 0 and a light quark for a = 1. At late times, the motion is diffusive, thus we can extract the diffusion coefficient

$$D(a,d) \sim \frac{1}{2}s^2(t \gg \beta, a, d) \tag{8}$$

which in  $AdS_5$  for a heavy quark reads  $2\beta/\pi\sqrt{\lambda}$ . From this, we obtain

$$\kappa_T = 2T^2/D = \pi\sqrt{\lambda}T^2/\beta = \pi\sqrt{\lambda}T^3 \tag{9}$$

$$\hat{q} = \langle p_{\perp}(t)^2 \rangle \lambda \approx \kappa_T t / \lambda = (2\pi T^3 \sqrt{\lambda}) / v \tag{10}$$

Requiring these fluctuations to obey the fluctuation-dissipation theorem, we attain  $\mu = \pi \sqrt{\lambda} T^2/2E$ . The computations based on this model will be labeled D=const.

# 3. Leading Order Correlations

# 3.1. 2D correlations

In Fig. 1 and Fig. 2, the  $\frac{d^2N}{d\phi dp_T}$  correlations are depicted for representative sections of the respective  $p_T$  classes. We observe that, for low  $p_T$ , we attain very efficient broadening of the angular correlations. For mid  $p_T$ , the angular correlations are much tighter, however with

 $\lambda_2 = 11.3$ 



**Figure 2:**  $\frac{d^2N}{d\phi dp_T}$  correlations of  $b\bar{b}$  pairs for  $p_A = \{2.5, 6.5\}$  GeV at 40-50 centrality for the D(p) model

greater broadening of the momentum correlations, at least in absolute terms. For  $\lambda_2 = 11.3$ , both angular and momentum correlations are much weaker than for  $\lambda_1 = 5.5$ , given the larger consequent drag coefficient of the former.

## 3.2. Azimuthal correlations

In [1], at leading order, the weak coupling based computations exhibited very efficient broadening of initial azimuthal correlations for low  $p_T b\bar{b}$  pairs ([4 - 10]GeV), which were washed out once NLO production processes were taken into consideration.

Both for mid- and high- $p_T$  ([4-10]GeV and [10-20]GeV respectively), the initial correlations survive to a large degree, both at leading order and at next-to-leading order, suggesting that they may still be observable in an experimental context.

We compare our strong coupling azimuthal correlations to the weak coupling ones in Fig. 3. For [10 - 20 GeV], our correlations are significant more peaked at their initial back-toback correspondence. At [4 - 10 GeV], this observation still holds for the upper bound of our parameters with  $\lambda_1 = 5.5$ , while the  $\lambda_2 = 11.3$  bounded result is of similar magnitude but looser angular correlation than either the collisional or the collisional + Bremsstrahlung based results. In the [1 - 4 GeV] range, the azimuthal correlations are almost entirely washed out for  $\lambda_2 = 11.3$ , while for  $\lambda_1 = 5.5$ , they are broadened with similiar efficiency to the weak coupling results.

Of particular interest is the difference in momentum correlations the [1-4GeV] range exhibits. At about an order of magnitude, this difference promises a distinguishing observable of weakand strong-coupling energy loss in the medium, and should be investigated experimentally.

/FloatBarrier

# 4. $R_{AA}$ and $v_2$

We compare bottom and charm suppression predictions with data from CMS and ALICE (Fig. 4). While the agreement with CMS data for B meson suppression is comparable between the D(p) and D=const models, the comparison with ALICE data for D mesons shows the limited validity range of the D(p) model, whereas the D=const model remains consistent with data even for high- $p_T$ . More fundamentally, for the D(p) model, the AdS/CFT picture naturally breaks down at  $p_T \sim 100$  GeV [6]. For the D=const model, there is no such natural breakdown. Only for asymptotically large  $p_T$  and T is one guaranteed that the physics is perturbative.



**Figure 3:**  $\frac{dN}{d\phi}$  correlations for the specified classes.



**Figure 4:** (Left) Comparison with  $R_{AA}^B$  data from CMS [16] with  $\sqrt{s_{NN}} = 5.02$  TeV, |y| < 2.4. (Right) Comparison with  $R_{AA}^D$  data from ALICE [17] with  $\sqrt{s_{NN}} = 5.02$  TeV, |y| < 0.5. The bands range from  $\lambda = 5.5$  to  $\lambda = 11.3$ .



**Figure 5:** (Left)  $R_{AA}^B$  and (Right)  $v_2^B$  with  $\sqrt{s_{NN}} = 200$  GeV,  $|\mathbf{y}| < 1.0$  and 10 - 40% centrality for future RHIC measurements. The bands range from  $\lambda = 5.5$  to  $\lambda = 11.3$ .

In Fig. 5, we show our predictions for suppression and flow of B-mesons at RHIC. B-mesons are noticeably less suppressed than at the LHC, due to the substantially cooler medium in heavy collisions at RHIC.

The bands of our predictions range from  $\lambda = 5.5$  to  $\lambda = 11.3$  and account for statistical uncertainties. We note that, in particular for the high- $p_T$  range of the B-meson predictions in Fig. 4 (left), our results' uncertainty is significant for high- $p_T$ . This is due to the production

spectrum of heavy quarks dropping ~  $p_T^{-4}$ . aMC@NLO, at the time of writing, does not allow event generation weighted by  $p_T$ . In future work, we will use POWHEG's weighted event generation [18] to explore high- $p_T$  phase space of our observables.

# 5. Conclusion & Outlook

We have compared the azimuthal correlations predicted by pQCD and AdS/CFT based computations and found that, while the azimuthal correlations are qualitatively similar, the momentum correlations tell a different tale. In particular, the surprise of our findings is the large dissimilarity in low momentum correlations of the pQCD and AdS/CFT based simulations; see Fig. 3 (left). Thus, bottom quark momentum correlations present an opportunity to distinguish between the energy loss mechanisms of the two frameworks.

Whether this order of magnitude difference in predictions for low  $p_T$  correlations of heavy quarks exposes weaknesses in either or both of the frameworks cannot be declared until experimental data of bottom quark momentum correlations emerge. Strong coupling based approaches have fared better in the low momentum domain, where pQCD is restrained by uncertainties in the running coupling.

While the agreement with CMS data for B meson suppression is comparable between the D(p) and D=const models, the comparison with ALICE data for D mesons shows the limited validity range of the D(p) model, whereas the D=const model remains consistent with data even for high- $p_T$ . The RHIC data exhibits decreased suppression compared with the LHC data, which can be understood from the lower temperatures of the medium at RHIC.

The high- $p_T$  reach of recent results from the LHC Fig. 4, particularly CMS Fig. 4 (left), exposes the limited statistics of our simulations for high- $p_T$ . In future calculations, we will migrate from aMC@NLO to POWHEG [18] to facilitate weighted event generation.

### 6. Acknowledgements

The authors wish to thank the South African National Research Foundation and SA-CERN for their generous financial support.

# References

- [1] Nahrgang M, Aichelin J, Gossiaux P B and Werner K 2014 Phys. Rev. C90 024907 (Preprint 1305.3823)
- [2] Casalderrey-Solana J, Liu H, Mateos D, Rajagopal K and Wiedemann U A 2011 Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Preprint 1101.0618) chapter 3.1 p 54
- [3] Horowitz W A 2013 Nucl. Phys. A904-905 186c–193c (Preprint 1210.8330)
- [4] Gubser S S, Klebanov I R and Peet A W 1996 Phys. Rev. D54 3915–3919 (Preprint hep-th/9602135)
- [5] Shen C, Heinz U, Huovinen P and Song H 2011 Phys. Rev. C84 044903 (Preprint 1105.3226)
- [6] Horowitz W A 2015 Phys. Rev. **D91** 085019 (Preprint 1501.04693)
- [7] Moerman R W and Horowitz W A 2016 Preprint 1605.09285
- [8] Gubser S S 2008 Nucl. Phys. B790 175-199 (Preprint hep-th/0612143)
- [9] Cacciari M, Frixione S, Houdeau N, Mangano M L, Nason P and Ridolfi G 2012 JHEP 10 137 (Preprint 1205.6344)
- [10] Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O, Shao H S, Stelzer T, Torrielli P and Zaro M 2014 JHEP 07 079 (Preprint 1405.0301)
- [11] Bahr M et al. 2008 Eur. Phys. J. C58 639-707 (Preprint 0803.0883)
- [12] Moore G D and Teaney D 2005 Phys. Rev. C71 064904 (Preprint hep-ph/0412346)
- [13] Herzog C P, Karch A, Kovtun P, Kozcaz C and Yaffe L G 2006 JHEP 07 013 (Preprint hep-th/0605158)
- [14] Hambrock R and Horowitz W 2017 J. Phys. Conf. Ser. 889 012015
- [15] Hambrock R and Horowitz W A 2017 Nucl. Part. Phys. Proc. 289-290 233-236 (Preprint 1703.05845)
- [16] Sirunyan A M et al. (CMS) 2017 Phys. Rev. Lett. 119 152301 (Preprint 1705.04727)
- [17] ALICE Collaboration 2017 (Preprint ALI-PREL-128542)
- [18] Alioli S, Hamilton K, Nason P, Oleari C and Re E 2011 JHEP 04 081 (Preprint 1012.3380)