Mitigating the effect of fake missing energy using Machine learning technique in the ATLAS experiment

K G Tomiwa

School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
E-mail: kehinde.gbenga.tomiwa@cern.ch

Abstract.
The missing transverse momentum in the ATLAS experiment is the momentum imbalance in the plane transverse to the beam axis. That is the resultant of the negative vectorial sum of the momenta of all particles that are involved in the proton-proton collision. A precise measurement of the missing transverse energy is essential for many physics studies at the LHC, such as Higgs boson measurements and dark matter search. The result presented in this study are from the implementation of Boosted Decision tree (BDTs) based on vertex variables and fake/real missing samples. The preliminary results show the BDT classifiers can improve signal purity to about 50% as compared to the nominal selection.

1. Introduction

The Standard Model (SM) of particle physics has been very successful in the predictability of new particles that have been confirmed in many experiments. Despite its success, the SM is not perfect because the theory holds many unexplained phenomena like its inability to explain gravity, the reason for the mass of neutrinos, dark matter, and dark energy. A number of theoretical efforts to explain some of these phenomena have been published in terms of physics beyond the standard model. One of these theories is the heavy scalar model, developed by the high energy physics group of the University of the Witwatersrand.

The heavy scalar model resulted from the explanation of the discrepancies seen in the ATLAS and CMS observed data and the standard model prediction, Ref [1] gives a detailed list of excess used for the postulation. The model postulated a heavy scalar particle with the mass range within twice the mass of Higgs boson and top quark \(2m_h < m_H < 2m_t \), where \(H \) is the heavy scalar particle and \(h \) is the Higgs boson). Ref [2] gives a comprehensive list of decay modes of the heavy scalar particle, one of which is the associated production of Higgs boson and a scalar mediator \((H \rightarrow hS) \), the mediator scalar mostly decays to dark matter particle. This gives the possibilities of searching for the heavy scalar particle in a various Higgs final state with an additional requirement of missing transverse energy \((E_T^{miss}) \).

The heavy scalar particle was first searched in the Higgs to di-photon and missing transverse energy [3]. Since the analysis is heavily based on the reconstruction of missing transverse energy, a considerable effort was put into studying real and fake missing transverse energy. In run 2, it was discovered that the jet vertex tagger algorithm used by the analysis has the potential of
introducing fake missing transverse energy and in turn contaminating the signal of the heavy scalar particle. The JVT variable was developed to reject pileup jets in the central region of the ATLAS detector, it was discovered that the JVT variable can fail due to misidentification of some physics object (Figure 1). When this happens, the E_T^{miss} reconstruction algorithm reconstructs a fake E_T^{miss} due rejection of physics objects, this E_T^{miss} is called the fake E_T^{miss}, while the real E_T^{miss} arises from non-interacting particles like the dark matter particles and the neutrinos.

Figure 1. Real and fake missing transverse energy in ATLAS experiment.

An improved result was presented in Ref. [4], the event selection categories were re-optimized with the introduction of the Same Vertex method (SV). The SV method was introduced to suppress fake E_T^{miss} by requiring the sum squared of momentum of tracks from physics vertex $(\sum (p_T^{\text{track}})^2(\text{Physics}))$ minus the sum squared of momentum of tracks from pileup vertex $\sum (p_T^{\text{track}})^2(\text{Pile-up})$ to be larger than 0. This method has about 60% background rejection efficiency, this performance is expected to get worse in phase two of run 2 data taking, due to the increase in average collision interaction per crossing (Figure 2). The Multivariate analysis (MVA) techniques was introduced to improve the suppression of fake missing energy.

2. Multivariate Analysis Technique

The Boosted decision tree (BDT) is the multivariate analysis techniques used in this research. A decision tree uses more than one variable to solve a classification or regression problem. The boosting method tried to improve a single decision tree by training several decision trees (forest of trees) and using the aggregation over the many trees as the final decision tree. The boosted method generally increases the robustness of a single decision against data outliers and statistical fluctuation. In this analysis, BDT classifiers are trained to distinguish events with real E_T^{miss} from fake E_T^{miss}. BDT (Figure 3) is a structured cut (similar to the nominal physics cut-based analysis) organized into the node to form a tree. It aims to learn cut structure that maps a set of features $(x = x_1, ..., x_d)$ to a target labels $(y$, for this analysis the target labels are binary label, where 1 represents signal sample with real E_T^{miss} events and 0 represents background sample with fake E_T^{miss} events).
Figure 3. Schematic view of a decision tree.

Figure 4. Number of interaction per crossing in the 13 TeV data from 2015 to 2018.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>275mx60</td>
<td>Heavy scalar decaying to one Higgs boson in association with dark matter (Real E_T^{miss} from dark matter candidate).</td>
</tr>
<tr>
<td>ggZH125</td>
<td>Z boson produced from gluon-gluon fusion (Real E_T^{miss} from neutrinos produced by Z decay).</td>
</tr>
<tr>
<td>A400Z</td>
<td>Heavy pseudo-scalar particle decaying to Z boson and heavy scalar (Real E_T^{miss} from neutrinos produced by Z decay and dark matter candidate produced heavy scalar decays).</td>
</tr>
<tr>
<td>Mixed background</td>
<td>$\gamma\gamma$, $\gamma - Jet$ and W/Z background sample</td>
</tr>
</tbody>
</table>

3. BDT samples and Categorization
Table 1 gives the acronyms and description of signal and background samples used for this analysis. All the signal samples are normalized to their corresponding cross-section and each samples of the combined background sample is scaled so that they can describe the Higgs sideband.

Classifiers are formed from the combination of the mixed background sample with each of the signal sample. Each combination of samples are categorized by the preselection in Table 2, this results in nine different classifiers, Figure 4 is a schematic description of how the classifiers are formed. The events are binned by missing transverse energy significance ($S_{E_T^{miss}}$) and the number of central jets, $S_{E_T^{miss}}$ is defined as the ratio of E_T^{miss} and square sum of transverse energy of all particle detected.

3.1. BDT Training and hyper-parameters
The entire dataset is divided into test-set and train-set in 50 to 50 ratio. The trainset is used to model development and training while the test-set is used for evaluation and BDT performance measurement. The following BDT hyper-parameters are used to configure decision trees:

Number of trees (NTrees): Number of trees in the forest (T). It represents the total
Table 2. Table showing BDT categories.

<table>
<thead>
<tr>
<th>BDT cat</th>
<th>Pre-Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low $S_{E_T}^{miss}$</td>
<td>$S_{E_T}^{miss} > 2.5 && S_{E_T}^{miss} < 3.5 && N_{jet} \geq 1$</td>
</tr>
<tr>
<td>Int $S_{E_T}^{miss}$</td>
<td>$S_{E_T}^{miss} > 3.5 && S_{E_T}^{miss} < 5.5 && N_{jet} \geq 1$</td>
</tr>
<tr>
<td>High $S_{E_T}^{miss}$</td>
<td>$S_{E_T}^{miss} > 5.5 && N_{jet} \geq 1$</td>
</tr>
</tbody>
</table>

Number of aggregation in the boosted decision tree. NTrees is set to 800 for this study.

Minimum node size: The minimum percentage of training event required in a leaf node. This is one of the stop criteria of a decision tree.

Shrinkage: The learning rate (g), see above description for more details, g is set to 0.06.

Number of cuts: The number of grid points in a variable range used in finding the optimal cut in node splitting.

Maximum depth: The maximum tree depth allowed, Tree depth is defined as the length of the longest path from the tree root to a leaf. the root node is considered to have a depth of 0.

3.2. Variables

The variables below are used for this MVA study, they include photon and jet kinematics and the number of interaction per bunch crossing.

- **Photon pointing Vertex**: $\sum p_T^2$: Photon pointing vertex sum p_T squared.
- **Pile-up Vertex**: $\sum p_T^2$: Pile-up vertex sum p_T squared.
- μ: Number interaction per crossing.
- $\Delta\phi(\gamma\gamma, jet_1)$: Angular distance between diphoton system and leading jet (jet_1).
- $\Delta\phi(jet, E_T^{miss})$: Angular distance between jets system and missing transverse energy.
- $\sum p_T^2$ ($\sum p_T^2(php) - \sum p_T^2(PU)$): difference between photon pointing and pile-up vertex p_T.
- **Corrected jet vertex tagger** (JVT_{corr}): Corrected jet vertex fraction is the ratio of track p_T and p_T of jets in the calorimeter.
- R_{pT}^j: scalar sum of jet primary vertex track and jet track p_T associated with the diphoton system.
- $\Delta\phi(\gamma\gamma, E_T^{miss})$: Angular difference between diphoton system and missing transverse energy.
- $\Delta\phi(\gamma\gamma 1, 2)$: Angular difference between leading and sub-leading photon.
- $\Delta\phi(softjet, E_T^{miss})$: Angular difference between soft jets (jets with p_T less than 30 GeV) and missing energy.
- $\Delta\phi(Fjet, E_T^{miss})$: Angular difference between forward jets (jets outside the central region of the detector, $\eta \leq 2.4$)
- **Difference of ref jets and p_T^{jj}**: scalar difference of ref jets and the p_T of two leading jets.

3.3. Results

The performance of the BDT classifiers is measured in terms of background rejection efficiency against the signal acceptance efficiency, in the receiver operating curve (ROC). By definition, the top right-top most point on the ROC distribution gives the best trade-off point between signal acceptance and background rejection. Figure 5, 6 and 7 show the performance of the classifiers, an additional benchmark distribution of no improvement spectrum is added. The no
improvement spectrum represents the minimum signal to background significance. The region below the distribution is the no improvement region and the region above the distribution is the region with maximum improvement.

The ROC curve of the intermediate $S_{E_T^{miss}}$ classifiers shows that we can attain up to 64%, 80%, and 33% improvement insignificance if we cut on 0.9 for A400Z, ggZH125 and 275mx60 classifiers respectively. Another way of checking the performance of the BDT classifiers is to evaluate the trained information on a new dataset. Figures 8, 9 and 10 show the evaluation performance on data sideband, mixed background, pseudoscalar signal, heavy scalar signal and standard model Higgs production samples. The performance of all the classifiers give a background like a shape on the data sideband and the shape of the data sideband distribution is similar to background shape. The signal shapes give a signal

![Figure 5. Receiver operating curve for Low $S_{E_T^{miss}}$ region](image)

![Figure 6. Receiver operating curve for intermediate $S_{E_T^{miss}}$ region](image)

![Figure 7. Receiver operating curve for High $S_{E_T^{miss}}$ region](image)

![Figure 8. Evaluation of 275mx60 classifier in the intermediate $S_{E_T^{miss}}$ category](image)

The performance results suggest we can define a new set of BDT categories, by choosing BDT 0.4 as a working point in the intermediate category. Table 3 gives a summary of the new categories. The lower region represents the background region and the high region represent the BDT signal region.
Figure 9. Evaluation of A400Z classifier in the intermediate S_{ET}^{miss} category.

Figure 10. Evaluation of ggZH125 classifier in the intermediate S_{ET}^{miss} category.

Table 3. Table showing BDT categories.

<table>
<thead>
<tr>
<th>BDT classifier</th>
<th>BDT High</th>
<th>BDT Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A400Met35</td>
<td>A400BDT > 0.4</td>
<td>A400BDT < 0.4</td>
</tr>
<tr>
<td>ggZh125Met35</td>
<td>ggZh125BDT > 0.4</td>
<td>ggZh125BDT < 0.4</td>
</tr>
<tr>
<td>275mx60Met35</td>
<td>275mx60BDT > 0.4</td>
<td>275mx60BDT < 0.4</td>
</tr>
</tbody>
</table>

4. Conclusion

The search for dark matter particle with missing transfer energy signature is very important to most beyond the standard model and in particular the heavy scalar model. The clean signatures of missing transverse energy are mostly contaminated by fake missing energy arising from pileup interactions. The purity of this search region depends heavily on the correct reconstruction primary vertex of interaction. The photon pointing method is developed for correctly identifying the vertex of interaction. The diphoton analysis has developed a number of techniques to reject pileup objects. The jet vertex tagger and the forward jet tagger to suppress pile up jets in the forward region and outside the forward region of the detector respectively.

It was observed that the JVT suppression method sometimes causes fake missing energy by removing non-identified physics objects. The same vertex method was developed to reduce fake missing transverse energy caused by JVT. The same vertex variable ensures that the diphoton system is from the actual vertex of interaction and not the pileup vertex. The same vertex method attends over 50% performance of suppressing fake missing transverse energy. The ATLAS detector has seen an increase in average interaction per bunch and increase in pileup interaction. A multivariate analysis technique is developed to further suppress the fake missing energy due to an increase in pileup interaction. The MVA method uses photon and jet kinematics and $<\mu>$ to develop classifiers. The classifiers have about 80% performance for fake missing transverse energy rejection.

References