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Abstract.
The missing transverse momentum in the ATLAS experiment is the momentum imbalance

in the plane transverse to the beam axis. That is the resultant of the negative vectorial sum
of the momenta of all particles that are involved in the proton-proton collision. A precise
measurement of the missing transverse energy is essential for many physics studies at the LHC,
such as Higgs boson measurements and dark matter search. The result presented in this study
are from the implementation of Boosted Decision tree (BDTs) based on vertex variables and
fake/real missing samples. The preliminary results show the BDT classifiers can improve signal
purity to about 50% as compared to the nominal selection.

1. Introduction
The Standard Model (SM) of particle physics has been very successful in the predictability of
new particles that have been confirmed in many experiments. Despite its success, the SM is
not perfect because the theory holds many unexplained phenomena like its inability to explain
gravity, the reason for the mass of neutrinos, dark matter, and dark energy. A number of
theoretical efforts to explains some of these phenomena hava been published in terms of physics
beyond the standard model. One of these theories is the heavy scalar model, developed by the
high energy physics group of the University of the Witwatersrand.

The heavy scalar model resulted from the explanation of the discrepancies seen in the ATLAS
and CMS observed data and the standard model prediction, Ref [1] gives a detailed list of excess
used for the postulation. The model postulated a heavy scalar particle with the mass range
within twice the mass of Higgs boson and top quark (2mh < mH < 2mt, where H is the heavy
scalar particle and h is the Higgs boson). Ref [2] gives a comprehensive list of decay modes of
the heavy scalar particle, one of which is the associated production of Higgs boson and a scalar
mediator (H → hS), the mediator scalar mostly decays to dark matter particle. This gives
the possibilities of searching for the heavy scalar particle in a various Higgs final state with an
additional requirement of missing transverse energy (Emiss

T ).
The heavy scalar particle was first searched in the Higgs to di-photon and missing transverse

energy [3]. Since the analysis is heavily based on the reconstruction of missing transverse energy,
a considerable effort was put into studying real and fake missing transverse energy. In run 2,
it was discovered that the jet vertex tagger algorithm used by the analysis has the potential of



introducing fake missing transverse energy and in turn contaminating the signal of the heavy
scalar particle. The JVT variable was developed to reject pileup jets in the central region of
the ATLAS detector, it was discovered that the JVT variable can fail due to misidentification
of some physics object (Figure 1). When this happens, the Emiss

T reconstruction algorithm
reconstructs a fake Emiss

T due rejection of physics objects, this Emiss
T is called the fake Emiss

T ,
while the real Emiss

T arises from non-interacting particles like the dark matter particles and the
neutrinos.
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Figure 1. Real and fake mising
transverse energy in ATLAS exper-
iment.
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Figure 2. Number of interaction per crossing
in the 13 TeV data from 2015 to 2018.

An improved result was presented in Ref. [4], the event selection categories were re-optimized
with the introduction of the Same Vertex metho (SV). The SV method was introduced to
suppress fake Emiss

T by requiring the sum squared of momentum of tracks from physics vertex
(
∑

(ptrackT )2(Physics)) minus the sum squared of momentum of tracks from pileup vertex∑
(ptrackT )2(Pile − up) to be larger than 0. This method has about 60% background rejection

efficiency, this performance is expected to get worse in phase two of run 2 data taking, due to
the increase in average collision interaction per crossing (Figure 2). The Multivariate analysis
(MVA) techniques was introduced to improve the suppression of fake missing energy.

2. Multivariate Analysis Technique
The Boosted decision tree (BDT) is the multivariate analysis techniques used in this research.
A decision tree uses more than one variable to solve a classification or regression problem. The
boosting method tried to improve a single decision tree by training several decision trees (forest
of trees) and using the aggregation over the many trees as the final decision tree. The boosted
method generally increases the robustness of a single decision against data outliers and statistical
fluctuation. In this analysis, BDT classifiers are trained to distinguish events with real Emiss

T
from fake Emiss

T . BDT (Figure 3) is a structured cut (similar to the nominal physics cut-based
analysis) organized into the node to form a tree. It aims to learn cut structure that maps a set of
features (x = x1, ..., xd) to a target labels (y, for this analysis the target labels are binary label,
where 1 represents signal sample with real Emiss

T events and 0 represents background sample
with fake Emiss

T events).



Figure 3. Schematic view of a
decision tree.
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Figure 4. Number of interaction
per crossing in the 13 TeV data
from 2015 to 2018.

Table 1. Signal and Background dataset used for MVA training
Acronym Description
275mx60 Heavy scalar decaying to one Higgs boson in association with dark

matter (Real Emiss
T from dark matter candidate).

ggZH125 Z boson produced from gluon-gluon fusion (Real Emiss
T from neutrinos

produced by Z decay).
A400Z heavy pseudo-scalar particle decaying to Z boson and heavy scalar (Real

Emiss
T from neutrinos produced by Z decay and dark matter candidate

produced heavy scalar decay).
Mixed background γγ, γ − Jet and W/Z background sample

3. BDT samples and Categorization
Table 1 gives the acronyms and description of signal and background samples used for this
analysis. All the signal samples are normalized to their corresponding cross-section and each
samples of the combined background sample is scaled so that they can describe the Higgs
sideband.

Classifiers are formed from the combination of the mixed background sample with each of
the signal sample. Each combination of samples are categorized by the preselection in Table 2,
this results in nine different classifiers, Figure 4 is a schematic description of how the classifiers
are formed. The events are binned by missing transverse energy significance (SEmiss

T
) and the

number of central jets, SEmiss
T

is defined as the ratio of Emiss
T and square sum of transverse

energy of all particle detected.

3.1. BDT Training and hyper-parameters
The entire dataset is divided into test-set and train-set in 50 to 50 ratio. The trainset is used to
model development and training while the test-set is used for evaluation and BDT performance
measurement. The following BDT hyper-parameters are used to configure decision trees:

Number of trees (NTrees): Number of trees in the forest (T ). It represents the total



Table 2. Table showing BDT categories.
BDT cat Pre-Selection
Low SEmiss

T
SEmiss

T
> 2.5 && SEmiss

T
< 3.5 && Njet ≥ 1

Int SEmiss
T

SEmiss
T

> 3.5 && SEmiss
T

< 5.5 && Njet ≥ 1

High SEmiss
T

SEmiss
T

> 5.5 && Njet ≥ 1

number of aggregation in the boosted decision tree. NTrees is set to 800 for this study.

Minimum node size: The minimum percentage of training event required in a leaf node.
This is one of the stop criteria of a decision tree.

Shrinkage: The learning rate (g), see above description for more details, g is set to 0.06.

number of cuts: The number of grid points in a variable range used in finding the optimal
cut in node splitting.

maximum depth: The maximum tree depth allowed, Tree depth is defined as the length of
the longest path from the tree root to a leaf. the root node is considered to have a depth
of 0.

3.2. Variables
The variables below are used for this MVA study, they include photon and jet kinematics and
the number of interaction per bunch crossing.

• Photon pointing Vertex
∑
p2T : Photon pointing vertex sum pT squared.

• Pile-up Vertex
∑
p2T : Pile-up vertex sum pT squared.

• µ: Number interaction per crossing.

• ∆φ(γγ, jet1): Angular distance between diphoton systen and leading jet (jet1).

• ∆φ(jet, Emiss
T ): Angular distance between jets system and missing transverse energy.

•
∑
p2T (

∑
p2T (php) −

∑
p2T (PU)): difference between photon pointing and pile-up vertex pT .

• Corrected jet vertex tagger (JV Tcorr): Corrected jet vertex fraction is the ratio of
track pT and pT of jets in the calorimeter.

• Rjet
pT : scalar sum of jet primary vertex track and jet track pT associated witht the diphoton

system.

• ∆φ(γγ,Emiss
T ): Angular difference between diphoton system and missing trsnverse energy.

• ∆φ(γγ1, γ2: Angular differnce between leading and sub-leading photon.

• ∆φ(softjet, Emiss
T ): Angular differnece between soft jets (jets with pT less than 30 GeV)

and missing energy.

• ∆φ(Fjet, Emiss
T ): Angular diifernce between forward jets (jests outside the central region

of the detector, η ≤ 2.4)

• Difference of ref jets and pjjT : scalar difference of ref jets and the pT of two leading
jets.

3.3. Results
The performance of the BDT classifiers is measured in terms of background rejection efficiency
against the signal acceptance efficiency, in the receiver operating curve (ROC). By definition,
the tope right-top most point on the ROC distribution gives the best trade-off point between
signal acceptance and background rejection. Figure 5, 6 and 7 show the performance of the
classifiers, an additional benchmark distribution of no improvement spectrum is added. The no



improvement spectrum represents the minimum signal to background significance. The region
below the distribution is the no improvement region and the region above the distribution is the
region with maximum improvement.

The ROC curve of the intermediate SEmiss
T

classifiers shows that we can attain up to 64%, 80%,

and 33% improvement insignificance if we cut on 0.9 for A400Z, ggZH125 and 275mx60 classifiers
respectively. Another way of checking the performance of the BDT classifiers is to evaluate the
trained information on a new dataset. Figures 8, 9 and 10 show the evaluation performance on
data sideband, mixed background, pseudoscalar signal, heavy scalar signal and standard model
Higgs production samples. The performance of all the classifiers give a background like a shape
on the data sideband and the shape of the data sideband distribution is similar to background
shape. The signal shapes give a signal
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The performance results suggest we can define a new set of BDT categories, by choosing
BDT 0.4 as a working point in the intermediate category. Table 3 gives a summary of the new
categories. The lower region represents the background region and the high region represent the
BDT signal region.
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Table 3. Table showing BDT categories.
BDT classifier BDT High BDT Low

A400Met35 A400BDT > 0.4 A400BDT < 0.4
ggZh125Met35 ggZh125BDT > 0.4 ggZh125BDT < 0.4
275mx60Met35 275mx60BDT > 0.4 275mx60BDT < 0.4

4. Conclusion
The search for dark matter particle with missing transfer energy signature is very important to
most beyond the standard model and in particular the heavy scalar model. The clean signatures
of missing transverse energy are mostly contaminated by fake missing energy arising from pileup
interactions. The purity of this search region depends heavily on the correct reconstruction
primary vertex of interaction. The photon pointing method is developed for correctly identifying
the vertex of interaction. The diphoton analysis has developed a number of techniques to reject
pileup objects. The jet vertex tagger and the forward jet tagger to suppress pile up jets in the
forward region and outside the forward region of the detector respectively.

It was observed that the JVT suppression method sometimes causes fake missing energy
by removing non-identified physics objects. The same vertex method was developed to reduce
fake missing transverse energy caused by JVT. The same vertex variable ensures that the di-
photon system is from the actual vertex of interaction and not the pileup vertex. The same
vertex method attends over 50% performance of suppressing fake missing transverse energy.
The ATLAS detector has seen an increase in average interaction per bunch and increase in
pileup interaction. A multivariate analysis technique is developed to further suppress the fake
missing energy due to an increase in pileup interaction. The MVA method uses photon and jet
kinematics and < µ > to develop classifiers. The classifiers have about 80% performance for
fake missing transverse energy rejection.
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