## 63<sup>rd</sup> ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS



Contribution ID: 195

Type: Poster Presentation

## Crystal structure and thermodynamic properties of the non-centrosymmetric PrRu<sub>4</sub>Sn<sub>6</sub> caged compound

Tuesday, 26 June 2018 15:00 (2 hours)

PrRu<sub>4</sub>Sn<sub>6</sub> is a tetragonal, non-centrosymmetric structure compound [1]. It is isostructural to the extensively studied Kondo insulator CeRu<sub>4</sub>Sn<sub>6</sub> [2, 3, 4] which crystallizes in the YRu<sub>4</sub>Sn<sub>6</sub>-type structure with space group <i>I</i>-42<i>m</i>. In this structure, the Pr atom fills the void formed by the octahedral Ru<sub>4</sub>Sn<sub>6</sub> units which results in a tetragonal body centered arrangement [1, 5]. Here we present the physical and magnetic properties of PrRu<sub>4</sub>Sn<sub>6</sub>. The specific heat, <i>C<sub>p</sub></i>(<i>T</i>), electrical resistivity, &rho(<i>T</i>) and magnetic susceptibility, &chi(<i>T</i>) results collected between 300 K and 2 K do not show any phase transition in the temperature range. &chi(<i>T</i>) follows Curie-Weiss behavior above 100 K with effective magnetic moment, &mu<sub>eff</sub> = 3.34 &mu<sub>B</sub>/Pr which is close to the expected free ion value of 3.58 &mu<sub>B</sub>/Pr and paramagnetic Weiss temperature, &theta<sub>p</sub> = -19.47 K indicating a dominant antiferromagnetic interaction. The magnetization, <i>M</i>(<i>H</i>) at 2 K is quasi-linear in nature and attains a value of 0.86 &mu<sub>B</sub>/Pr at 7 T which is well reduced compared to the free ion saturation moment of 3.32 &mu<sub>B</sub>/Pr possibly due to magnetocrystalline anisotropy in the polycrystalline sample. The low-temperature analysis of <i>C<sub>p</sub></i>(<i>T</i>) gives a Sommerfeld coefficient, & gamma = 38.60 mJ/(K<sup>2</sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/sup>2/smol). &rho(<i>T</i>) follows a typical metallic behavior down to low-temperatures in contrast to the semimetallic behavior observed in CeRu<sub>4</sub>Sn<sub>6</sub>. The thermal conductivity, &kappa of PrRu<sub>4</sub>Sn<sub>6</sub> shows a glassy behavior above 30 K possibly due to the interactions of the low-frequency "rattling" vibrations of the guest atom with the acoustic phonons of the host lattice resulting in heat dissipation.

## Please confirm that you<br>have carefully read the<br>abstract submission instructions<br>under the menu item<br>"Call for Abstracts"<br><b/(Yes / No)</b>

Yes

Consideration for<br>student awards<br><b>Choose one option<br>from those below.</b><br>N/A<br>Hons<br>MSc<br>PhD

PhD

## Supervisor details<br><b>If not a student, type N/A.</b><br>Student abstract submision<br>requires supervisor permission:<br>please give their name,<br>institution and email address.

Prof. AM Strydom, University of Johannesburg, amstrydom@uj.ac.za

**Primary authors:** Prof. STRYDOM, Andre (University of Johannesburg); Mr OGUNBUNMI, Michael (University of Johannesburg)

**Presenter:** Mr OGUNBUNMI, Michael (University of Johannesburg)

Session Classification: Poster Session 1

Track Classification: Track A - Physics of Condensed Matter and Materials