63rd ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS

Contribution ID: 8

Type: Oral Presentation

Beyond Li-ion: Computational Modelling Studies on Stability of Li-S-Se System

Tuesday, 26 June 2018 10:00 (20 minutes)

Recent rechargeable batteries are mainly based on conventional lithium intercalation chemistry, using lithium transition metal oxides as cathode material with typical capacities of 120-160 mA.h/g. The low energy density and/ or high cost of these cathode materials have limited their large scale production and application in Li ion batteries. Exploration of new cathode materials is consequently necessary to realise more efficient energy storage systems. Lithium sulphur cells have a promise of providing 2-5 times the energy density of Li-ion cells, however, they suffer poor cycling performance. Improvements that are effected by using Li/SeS _x system in different electrolytes have been reported.

In the current study we employ computational modelling methods to explore stability, structural and electronic properties of discharge products formed in the Li/SeS _x battery, which has potential to offer higher theoretical specific energy and remedies the challenges that Li-S battery encounters. First principle methods were used to calculate thermodynamic properties of Li ₂S and Li ₂Se, which agreed with available experimental results. A cluster expansion technique generated new stable phases of Li/SSe _x system and Monte Carlo simulations determined concentration and temperature ranges in which the systems mix. Interatomic Born Meyer potential models for Li2S and Li2Se were derived and validated and used to explore high temperature structural and transport properties of mixed systems. Our study demonstrated that a combination of different computational techniques could assist in generating new stable phases of materials for future high energy density rechargeable batteries.

Please confirm that you
have carefully read the
abstract submission instructions
under the menu item
"Call for Abstracts"
<b/(Yes / No)

Yes

Consideration for
student awards
Choose one option
from those below.
N/A
Hons
MSc
PhD

PhD

Supervisor details
If not a student, type N/A.
Student abstract submision
requires supervisor permission:
please give their name,
institution and email address.

Prof Phuti Ngoepe University of Limpopo phuti.ngoepe@ul.ac.za **Primary authors:** Mr MASEDI, Cliffton (UL); Dr SITHOLE, Happy (CSIR/CHPC); Prof. NGOEPE, Phuti (UL)

Presenter: Mr MASEDI, Cliffton (UL)

Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials