63rd ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS

Contribution ID: 199

Type: Oral Presentation

Sol-gel combustion synthesis and stability of La₂O₃:Bi³⁺ powder phosphor

Wednesday, 27 June 2018 14:00 (20 minutes)

Bismuth (Bi) ions exhibit interesting optical properties, yet have been less intensively studied compared to rare earth ions. Bi doped lanthanum oxide (La₂O₃:Bi³⁺) phosphor was synthesized via the sol-gel combustion method at 250 °C using citric acid as the fuel. The product powder was annealed at different temperatures between 800 °C to 1400 °C in air for 2 h. X-ray diffraction (XRD) data confirmed that the La₂O₃ host as well as doped phosphor crystallized in a hexagonal lattice. For photoluminescence spectroscopy (PL) an excitation wavelength of 308 nm, the phosphor powder produced a blue emission band centered at 462 nm. The maximum intensity was obtained for the sample doped with 0.2 mol% Bi which was annealed at 1200 °C. It was observed that the luminescence from the samples decreased after storage of several weeks. XRD measurements revealed that the La₂O₃ had changed to La(OH)₃, which does not give luminescence when doped with Bi. It has been reported that La₂O₃ can absorb moisture from the air and transform to La(OH)₃. This was observed to occur completely in about 6 days. The poorly emitting samples were re-annealed between 500 °C and 800 °C for 2 h. For the highest temperature it was found that the structure reverted completely to La₂O₃ and the blue PL emission was once again observed at about the same intensity as for freshly prepared samples. Although La₂O₃:Bi³⁺ can be used as a blue emitting phosphor, it is only suitable for applications where it will not be exposed to moisture in the atmosphere. For samples stored in a vacuum desiccator for one week, no change for XRD and PL were observed. Therefore, it may have an application as a moisture sensor, because while the luminescence remains high it is evidence that it has not been exposed to the atmosphere.

Please confirm that you
br>have carefully read the
dr>abstract submission instructions
br>under the menu item
br>"Call for Abstracts"
br>
(Yes / No)</br/>/b>

Yes

Consideration for

-student awards

-b>Choose one option

-br>from those below.

-b>Choose one option

-br>from those below.

-br>N/A

-br>Hons

-br>PhD

MSc

Supervisor details

br>

br>If not a student, type N/A.

br>Student abstract submision

br>requires supervisor permission:

br>please give their name,

institution and email address.

Prof Kroon, UFS, KroonRE@ufs.ac.za

Primary authors: Dr YOUSIF, Abdelrhman (UofK); Mr JAFFAR, Babiker (ufs); Dr SEED AHMED, Hassan (assistant Professor); Prof. SWART, Hendrik (University of the Free State); Prof. KROON, R. E. (University of the

Free State)

Presenter: Mr JAFFAR, Babiker (ufs)

Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials