63rd ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS

Contribution ID: 328

Type: Oral Presentation

Creation, characterization and analysis of propagation invariant vector flat-top beams

Wednesday, 27 June 2018 14:20 (20 minutes)

Laser beams structured to have a uniform peak intensity profile (flat-top) have become ubiquitous and a topic of interest in many research fields. However, such beams alter their intensity profile as they propagate in free space. This problem can be overcome by generating vector flat-top beams. Here, we present theoretical simulations and demonstrate experimentally the creation of propagation invariant vector flat-top beams. By utilizing the spatial light modulator's polarization dependent efficiency, we coaxially superimpose a Gaussian and donut beam with orthogonal polarization states. We employ a classical and quantum toolkit to characterize and analyse the vector state of the resulting vector flat-top beam during propagation. As an example, we demonstrate the adaptability of these beams in an optical tweezer system however these beams can be of impact in a wide range of applications.

Please confirm that you
have carefully read the
abstract submission instructions
under the menu item
"Call for Abstracts"
<b/(Yes / No)

yes

Consideration for
student awards
Choose one option
from those below.
N/A
Hons
MSc
PhD

PhD

Supervisor details
If not a student, type N/A.
Student abstract submision
requires supervisor permission:
please give their name,
institution and email address.

Prof. Andrew Forbes University of the Witwatersrand andrew.forbes@wits.ac.za

Primary authors: Prof. FORBES, Andrew (U. Witwatersrand); Dr ROSALES-GUZMAN, Carmelo (University of the Witwatersrand, Johannesburg); Mr BHEBHE, NKOSIPHILE ANDILE (UNIVERSITY OF THE WITWATER-SRAND)

Presenter: Mr BHEBHE, NKOSIPHILE ANDILE (UNIVERSITY OF THE WITWATERSRAND)

Session Classification: Photonics

Track Classification: Track C - Photonics