63rd ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS Contribution ID: 327 Type: Oral Presentation ## Magnetic and physical properties of new hexagonal PrPt₄<i>X</i> (<i>X</i> = Ag, Au) compounds Wednesday, 27 June 2018 16:40 (20 minutes) We have synthesized PrPt₄Ag and PrPt₄Au compounds for the first time and report their crystal structure, as well as magnetic and physical properties in the temperature range between 2 K and 300 K. Both compounds are derived from the substitution of Pt with Ag and Au respectively in the parent compound PrPt₅ which crystallizes in the hexagonal CaCu₅-type structure [1, 2]. Here, we observed the preservation of the hexagonal CaCu₅-type structure under such substitutions which is in contrast to the observations in PrCu₄Ag and PrCu₄Au [3, 4] adopting the cubic MgCu₄Sn-type structure upon substitution on parent hexagonal PrCu₅. The temperature dependence of specific heat, <i>C_p(T)</i> and electrical resistivity, &rho(<i>T</i>) of PrPt₄Ag show an anomaly at 7.6 K but which is absent in the magnetic susceptibility, &chi(<i>T</i>) and thus suggesting a possible multipolar ordering of the Pr³⁺ magnetic moment. PrPt₄Au on the other hand does not show any anomaly but an upturn in <i>C_p(T)/T</i> below about 10 K and reaching a value of 1.23 J/(K²mol) at 2 K. In addition, &rho(<i>T</i>) ~ <i>T</i> and &chi(<i>T</i>)~<i>T</i>^{-1/3} for nearly a decade in temperature. These observations in PrPt₄Au are the hallmark of a non-Fermi liquid (nFL) behavior and is characteristic of a system with a low lying or $der\ parameter.\ The\ analysis\ of\ the\ low\ temperature\ <i>C_p(T)</i> for\ PrPt₄Ag\ and\ parameter.$ PrPt₄Au give values of the Sommerfeld coefficient, &gamma = 728.5 mJ/(K²mol) and 509.1 mJ/(K²mol) respectively indicating a significant enhancement of the quasiparticle mass in the two compounds. Please confirm that you
br>have carefully read the
br>abstract submission instructions
br>under the menu item
br>"Call for Abstracts"
br><b/(Yes / No) Yes Consideration for
 student awards
 b>Choose one option
 br>from those below.
 b>SN/A
 Hons
 br>MSc
PhD PhD Supervisor details
 str>
 student, type N/A.
 student abstract submision
 supervisor permission:
 br>please give their name,
 institution and email address. Prof. AM Strydom, University of Johannesburg, amstrydom@uj.ac.za Primary authors: Prof. STRYDOM, Andre (University of Johannesburg); Mr OGUNBUNMI, Michael sity of Johannesburg) Presenter: Mr OGUNBUNMI, Michael (University of Johannesburg) **Session Classification:** Physics of Condensed Matter and Materials **Track Classification:** Track A - Physics of Condensed Matter and Materials