#### 63<sup>rd</sup> ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS



Contribution ID: 327

Type: Oral Presentation

### Magnetic and physical properties of new hexagonal PrPt<sub>4</sub><i>X</i> (<i>X</i> = Ag, Au) compounds

Wednesday, 27 June 2018 16:40 (20 minutes)

We have synthesized PrPt<sub>4</sub>Ag and PrPt<sub>4</sub>Au compounds for the first time and report their crystal structure, as well as magnetic and physical properties in the temperature range between 2 K and 300 K. Both compounds are derived from the substitution of Pt with Ag and Au respectively in the parent compound PrPt<sub>5</sub> which crystallizes in the hexagonal CaCu<sub>5</sub>-type structure [1, 2]. Here, we observed the preservation of the hexagonal CaCu<sub>5</sub>-type structure under such substitutions which is in contrast to the observations in PrCu<sub>4</sub>Ag and PrCu<sub>4</sub>Au [3, 4] adopting the cubic MgCu<sub>4</sub>Sn-type structure upon substitution on parent hexagonal PrCu<sub>5</sub>. The temperature dependence of specific heat, <i>C<sub>p</sub>(T)</i> and electrical resistivity, &rho(<i>T</i>) of PrPt<sub>4</sub>Ag show an anomaly at 7.6 K but which is absent in the magnetic susceptibility, &chi(<i>T</i>) and thus suggesting a possible multipolar ordering of the Pr<sup>3+</sup> magnetic moment. PrPt<sub>4</sub>Au on the other hand does not show any anomaly but an upturn in <i>C<sub>p</sub>(T)/T</i> below about 10 K and reaching a value of 1.23 J/(K<sup>2</sup>mol) at 2 K. In addition, &rho(<i>T</i>)~ <i>T</i> and  $\operatorname{chi}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{\sim}(\operatorname{i})^{$ are the hallmark of a non-Fermi liquid (nFL) behavior and is characteristic of a system with a low lying order parameter. The analysis of the low temperature <i>C<sub>q</sub>(T)</i> for PrPt<sub>4</sub>Ag and PrPt<sub>4</sub>Au give values of the Sommerfeld coefficient, &gamma = 728.5 mJ/(K<sup>2</sup>mol) and 509.1 mJ/(K<sup>2</sup>mol) respectively indicating a significant enhancement of the quasiparticle mass in the two compounds.

#### Please confirm that you<br>have carefully read the<br>abstract submission instructions<br>under the menu item<br>"Call for Abstracts"<br><b/(Yes / No)</b>

Yes

## Consideration for<br>student awards<br><b>Choose one option<br>from those below.</b><br>N/A<br>Hons<br>MSc<br>PhD

PhD

# Supervisor details<br><b>If not a student, type N/A.</b><br>Student abstract submision<br>requires supervisor permission:<br>please give their name,<br>institution and email address.

Prof. AM Strydom, University of Johannesburg, amstrydom@uj.ac.za

**Primary authors:** Prof. STRYDOM, Andre (University of Johannesburg); Mr OGUNBUNMI, Michael (University of Johannesburg)

Presenter: Mr OGUNBUNMI, Michael (University of Johannesburg)

Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials