63rd ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS

Contribution ID: 182

Type: Oral Presentation

La³⁺ doped ZnO nanofibers obtained through electrospinning: Influence of La³⁺ doping concentration on the structural, optical and gas sensing properties

Wednesday, 27 June 2018 12:20 (20 minutes)

ZnO has been used as a gas sensing material for different reducing and oxidizing gases, however; poor sensitivity and slow response and recovery times are hindering its commercial application. Doping of ZnO with different metallic ions such as rare earth and noble metals have proven to be one of the efficient ways of modifying its gas sensing performance. In this study, ZnO nanofibers with different La³⁺ doping concentration (0, 0ܧ, 0ܩ and 0ܫ wt.%) were successfully obtained through electrospinning and subsequent annealing at 500 °C. The effect of La³⁺ concentration on the structural, morphological, surface area and optical properties were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer Emmett Teller (BET) and Photoluminescence (PL) spectroscopy. XRD results revealed a single phase of hexagonal wurtzite ZnO that showed poor crystallinity, shifted peaks to higher two theta and changes in lattice parameters with La³⁺ doping, confirming the substitution of Zn²⁺ by La³⁺ in the ZnO lattice. Morphological studies revealed fibers structures that were made of tiny particles of 20-40 nm adjoined together and no change in morphology was induced by the La³⁺ doping. BET indicated that the surface area of ZnO was improved by La³⁺ doping. The PL emissions quenched with increasing La³⁺ concentration. Gas sensing performance of these samples to different test gases was performed at different temperatures ranging from room temperature to 400 °C at different gas concentrations ranging from 5-100 ppm.

Please confirm that you
have carefully read the
abstract submission instructions
under the menu item
"Call for Abstracts"
<b/(Yes / No)

Yes

Consideration for
student awards
b>Choose one option
from those below.
N/A
Hons
MSc
PhD

PhD

Supervisor details
If not a student, type N/A.
Student abstract submision
requires supervisor permission:
please give their name,
institution and email address.

Prof G.H Mhlongo, Council for Scientific and Industrial Research (CSIR), gmhlongo@csir.co.za

Primary authors: Ms MHLONGO, Gugu (CSIR, MSM, Nano Centre); Prof. SWART, Hendrik (University of the Free State); Ms SHINGANGE, Katekani (CSIR/UFS)

Presenter: Ms SHINGANGE, Katekani (CSIR/UFS)

Session Classification: Physics of Condensed Matter and Materials

Track Classification: Track A - Physics of Condensed Matter and Materials