#### 63<sup>rd</sup> ANNUAL CONFERENCE OF THE SA INSTITUTE OF PHYSICS



Contribution ID: 87

Type: Poster Presentation

### Electronic and Optical Properties of Lead-free Hybrid Perovskite CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> from first principles calculations

Tuesday, 26 June 2018 15:00 (2 hours)

Organic-inorganic halide perovskites have recently emerged as promising candidates for low cost, high-efficiency solar cells. In this work, the electronic and optical properties of the lead-free hybrid halide perovskite CH<sub>3</sub>NH<sub>3</sub>Sa as a solar cell absorber has been investigated using first-principles density functional theory calculations and many body perturbation theory. Our calculated electronic band gaps are 0.77, 1.23 and 1.40 eV using the Perdew, Burke and Ernzerhof, the modified Becke-Johnson and the hybrid functional HSE06, respectively. CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> has been reported to have a band gap of 1.21 and 1.35 eV depending on the preparation method. Our calculated band gap using the modified Becke-Johnson and hybrid functional HSE06 agree well with experimental results. The investigated compound (CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</sub>NH<sub>3</

#### Please confirm that you<br>have carefully read the<br>abstract submission instructions<br>under the menu item<br>"Call for Abstracts"<br>b>(Yes / No)</b>

yes

## Consideration for<br>student awards<br><b>Choose one option<br>from those below.</b><br>N/A<br>Hons<br>MSc<br>PhD

PhD

# Supervisor details<br><b>If not a student, type N/A.</b><br>Student abstract submision<br>requires supervisor permission:<br>please give their name,<br>institution and email address.

Daniel P. Joubert, The University of the Witwatersrand, daniel.joubert2@wits.ac.za

**Primary author:** Mr ABDALLAH ALI, Ibrahim Omer (The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa.)

**Co-authors:** Prof. JOUBERT, Daniel (School of Physics, University of the Witwatersrand); Dr SULEIMAN, MOHAMMED (Department of Basic Sciences, Imam Abdulrahman Bin Faisal University, P. 0. Box 1982, Dammam, KSA)

**Presenter:** Mr ABDALLAH ALI, Ibrahim Omer (The National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa.)

Session Classification: Poster Session 1

Track Classification: Track A - Physics of Condensed Matter and Materials