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Abstract. Mechano-chemical technique was utilised to synthesise the undoped ZnO, 5% cobalt 

and indium single doped and Co-In double doped ZnO nanoparticles. The kenosistec station 

equipment was employed to probe the prepared samples for gas sensing application. Methane 

(CH4) gas is being investigated in the present work. Current versus time curves show good 

response and recovery at 200 °C. Sensitivity against concentration curves reflect good sensitivity 

of (Co-In)-ZnO nanoparticles at 200 °C and good sensitivity of Co-ZnO nanoparticles at 350 °C. 

The Co-ZnO nanoparticles show great sensitivity to methane gas at the concentration of 40 ppm. 

In-ZnO nanoparticles have the fastest response and recovery times for the methane gas. 

1. Introduction

Methane (CH4) gas is a naturally occurring hydrocarbon, which forms whenever plant and animal matter

decays. It is extremely flammable and dangerous because it is lighter than air, odorless, colorless, and

tasteless, which makes it difficult to sense [1]. This gas has been reported to have a significantly higher

global warming potentials than carbon dioxide [2, 3]. In so speaking, there is a great need for monitoring

concentrations of CH4 gas in the atmosphere. Hence, some techniques such as the infrared absorptions

spectroscopy, optical interferometry, catalytic combustion, and semiconductor based modus are used to

detect methane (CH4) gas in the atmosphere [4, 5]. In this article semiconductor metal oxide based gas

sensor applications are being discussed. This is because such gas sensors have been found to be cost

effective and easy to develop as compared to the other form of sensors. CH4 is also a useful gas for

domestic purposes; it is used for cooking and heating. In industry, methane is used to refine

petrochemicals and in power stations to drive turbines for generating electricity. Food processors and

other companies that work with clay, stone and glass, make use of the energy released during extraction

of CH4 gas [6, 7]. This helps in maintaining healthy working and living environment, to avoid risk of

accidental explosion and public safety in general [4]. It is in this regard that the development of pocket

size, portable CH4 and related gases detector is of crucial importance for human and environmental

safety.

Various literature studies confirm that metal oxides have been identified as good candidates for gas 

sensors due to their ability to react with various elements [8]. To be precise, the development of these 

oxides at nanoscale level seem to be the ideal breaker for the optimum performance of gas sensors. 

Further on, one and two dimensional nanostructures pave the way in the design and development of high 

performing gas sensors [9]. In this article, ZnO doped nanoparticles are being discussed. Specifically, 

single against dual doped ZnO nanoparticles are being explored for the detection of CH4 gas. ZnO 
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nanoparticles are n-type semiconducting, non-toxic, physically and chemically stable with rich defect 

chemistry  [10 -12] . Schmidt-Mende et. al [10] further reported that the ZnO nanostructures have high 

surface area and their electronic processes are strongly influenced by surface morphology. The crystal 

defects of ZnO nanostructure surface such as oxygen vacancies [13], or shallow donors [14] play a major 

role as absorption sites for gas molecules. This feature assist in determining the gas sensing property of 

the nanostructures. Thus, ZnO nanostructures have a high sensitivity to a variety of chemical 

environments. To enhance their sensitivity and selectivity more, introduction of transition metal dopants 

into the ZnO matrix has been considered [15]. The In-doped ZnO nanofibers show high sensitivity to 

acetone than ethanol at 275 oC with minimum concentraton of 37.5 ppm [16]. Moosavi et al. [17] further 

reported good performance of Co-doped ZnO thin films to volatile organic compounds despite a notable 

increase in the crystallite size. In order to overcome the increasing crystallite size with some dopants 

but not compromising the sensitivity and selectivity of the system, a dual doping with indium (In) and 

cobalt (Co) is proposed. Studies by Shah et al. [18] suggested that double doping ZnO nanostructures 

by Al and Cr enhance its properties. Even Wang et al. [12] in 2010 illustrated that the gas sensing 

performance significantly increases with the decreasing crystallite size. In this approach, synthesis of 

nanoparticles by varying their morphology as well as reducing their crystallite sizes anticipates 

improving sensing towards CH4 and other gases.  

In this paper, the undoped ZnO, (Co or In) single and (Co, In) dual doped ZnO nanoparticles are 

subjected to CH4 gas to check their sensitivity and selectivity. The gas sensing ability of the 

nanostructures to CH4 gas is analysed with reference to their response to ammonia (NH3) gas  [19]. The 

operating temperature has an effect on how the nanostucture react with the CH4 gas molecules for an 

appropriate selectivity and response. The results obtained suggest that the undoped and dual doped ZnO 

nanoparticles exhibits good sensitivity and response at a temperatue of 200 °C. 

2. Procedure

The mechano-chemical technique was utilised to prepare the undoped ZnO nanoparticles, 5wt.% Co-

ZnO, In-ZnO and (Co-In)-ZnO nanoparticles samples. The KENOSISTEC station equipment was used

to characterise the prepared samples for CH4 gas sensing at various temperatures (200-350oC) and

concentrations (5-100 ppm).  In the process, all the samples which were in powder form were sonicated

in ethanol for 5 minutes before being coated on the surface of the aluminium substrate. The latter was

placed between two Pt electrodes and a heater. The substrates, coated with undoped ZnO, Co, In and

Co-In double doped ZnO nanoparticles, were inserted in a chamber within the KENOSISTEC station

machine. All the samples were subjected to concentrations of 5, 10, 20, 40, 60, 100 ppm of CH4 gas.

The station was maintained at constant voltage of 5 V. The gas flow in and out of the station was

maintained at 5 minutes intervals.

3. Results and discussion

3.1 Gas sensing applications

The undoped, Co and In single doped and (Co-In) double doped ZnO nanoparticles samples were all

examined in the CH4 gas environment for gas sensing application. In resemblance to the earlier ammonia

(NH3) gas testing [19], four distinct temperatures: 200, 250, 300 and 350 oC, were adopted for CH4 gas

testing. The response curves in CH4 gas environment are plotted for the said temperatures as shown in

Figure 1. All in all, it can be observed that a good response occurs at 200 oC. When the temperature is

elevated to 250 oC and above, a poor response even with  low CH4 gas concentrations is observed. The

indication is that the various ZnO nanoparticles samples operate very well at lower temperatures for

CH4 gas. Stolper et al. [20] reported that the thermogenic gases get produced in the temperature range

of 157° to 221 °C. This further suggest that the nanoparticles reported in this paper could only sense

methane gas at 200 °C.

In Figure 2, the undoped ZnO nanoparticles shows poor sensitivity to CH4 gas throughout all the tested

temperatures. The double doped ZnO nanoparticles also reflect an ascending order in sensitivity as the

concentration is increasing in the operating temperature of 200 oC. At 350 oC, all the single doped
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samples reflect enhanced sensitivity in all the concentrations. On the other hand, Co doped ZnO 

nanoparticles sensitivity to CH4 gas reflects an ascending order with increasing concentration in the 250 

and 300 oC operating temperatures. In the same manner, the opposite is observed for the sensitivity of 

Co doped ZnO nanoparticles to NH3 gas between 200 – 300 oC [19]. The In doped ZnO nanoparticles 

sensitivity is typically low at 250 and 300 oC operating temperatures with a maximum sensitivity of 5 at 

350 oC in all the gas concentrations except 5 ppm. An overall observation is that Co-ZnO nanoparticles 

is the most sensitive to CH4 gas at concentrations greater than 40 ppm and high temperatures [21]. 

Motaung et al. [21] also observed similar results for ZnO nanostructures which were exposed to CH4 

gas of different concentrations at 300 oC for 24 hours. In Table 1, the double doped ZnO nanoparticles 

show constant response and recovery time to methane gas, while In-ZnO nanoparticles have the fastest 

response time. The undoped ZnO  nanoparticles demonstrate the fastest recovery time. 

(a) (b) 

(c) (d) 

Figure 1: The graphs of current against time for the doped and undoped ZnO nanoparticles 

at various temperatures for concentrations range 5-100 ppm. 
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(a) (b) 

(c) 
(d) 

Figure 2: The sensitivity versus CH4 gas concentration plot for the doped and undoped 

ZnO nanoparticles at various temperatures.  

Table 1: The CH4 gas response and recovery for the doped and undoped ZnO nanoparticles 

at 10 ppm. 

Sample Response time (s) Recovery time (s) 

Undoped ZnO 300 289 

Co-ZnO 299 300 

In-ZnO 298 297 

(Co-In)-ZnO 299 299 
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4. Summary

The doped and undoped ZnO nanoparticles were successfully synthesised mechano-chemically. The

current versus time curves show good response and recovery for undoped and double doped samples at

200 °C. The undoped and (Co-In) doped ZnO nanoparticles are more favoured compared to the Co and

In single doped ZnO nanoparticles samples. The sensitivity of the Co doped ZnO nanoparticles is more

dominant at 350 oC. On the contrary, the (Co-In) doped ZnO nanoparticles is only sensitive at 200 oC.

The Co-ZnO nanoparticles reflect an ascending response magnitude with increasing concentration of

CH4 gas at all temperatures. The undoped ZnO nanoparticles reflect poor sensitivity in all operating

temperatures. The In doped ZnO nanoparticles possess the shortest response time.
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