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Abstract. The Radio Interferometric Measurement Equation (RIME) is an elegant
mathematical formalism that is uniquely suited for modelling both the direction-independent
(DIEs) and the direction-dependent (DDEs) observational effects exhibited by existing radio
interferometers (VLA, GMRT, WSRT) and upcoming instruments like SKA and its pathfinders.
This paper provides a brief introduction to the RIME and proceeds to discuss how it is being
implemented for predicting visibilities from the sky model in MeqTrees, a software package for
radio interferometric simulation and calibration.

1. Introduction

A radio interferometer measures visibilities, which are related to the radio brightness distribution
in the sky by a Fourier transform. In practice, the incoming radio signals are corrupted by
various source-dependent and instrument-dependent effects along the propagation path. For
an excellent introduction to radio interferometry and its techniques, refer [1]. The per-station1

complex gain terms, that do not vary across the field-of-view are the direction-independent
effects or DIEs. Effects like the primary beam pattern or ionospheric refraction that vary with
the source direction are called direction-dependent effects or DDEs.

The conventional “open-loop” calibration procedure along with the technique of self-
calibration [2], termed 1GC (for 1st Generation Calibration) and 2GC respectively2, can handle
the DIEs effectively and help astronomers regularly reach dynamic ranges exceeding 104. But to
obtain high dynamic range images that approach the theoretical noise limit, it is necessary that
the equations that characterize an observation account for the improved sensitivities and new
design techniques (eg., phased arrays) of existing and upcoming radio telescopes and ultimately,
deal with the DDEs. The radio interferometry measurement equation (RIME), provides a
complete mathematical framework to deal with all observational effects including DDEs, unlike
the approximate and less flexible pre-RIME formulations. Once a RIME is formulated, it can be
solved for to predict visibilities, which can serve as simulations of an observation or as models
for calibrating existing data. Such calibration methods that aim to handle DDEs are called
Third Generation Calibration (3GC) techniques.

MeqTrees [3] is a software package that provides a flexible way to construct a RIME in the
form of a tree. It can solve for any RIME, given enough constraints on the parameters to be

1 A station is a generic term referring to one element of an interferometer array.
2 Originally proposed by J. E. Noordam and O. M. Smirnov [3].



solved for. Starting with a qualitative overview of the RIME, this paper proceeds to discuss
how MeqTrees implements the RIME for visibility prediction. It then discusses the UVBrick
module which is used to simulate extended sources and how DDEs can be applied in the forward
direction (visibility prediction from sky model) within UVBrick.

2. The Radio Interferometry Measurement Equation

The original 4 x 4 Mueller matrix formalism of the RIME was proposed by Hamaker et
al [4]. Hamaker [5] rewrote the coherency vector that describes the visibility into a 2 x 2
coherency/visibility matrix so that it was more conducive for matrix multiplication with the
simpler 2 x 2 Jones matrices [6] used to describe observational effects. This is the form of RIME
that is implemented in MeqTrees and is derived in detail by Smirnov [7]. In this representation,
given

vp =

(

vx
vy

)

where, vx and vy are the two polarization components3 measured by station p, the visibility
measured by the two elements of an interferometer becomes
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The RIME can be written in many different forms. One useful form of writing it is to consider
the sky to be composed of a set of discrete point sources. In this case, the predicted visibility or
the 2 x 2 coherency matrix Vpq between two stations p and q of an interferometer is given by,

Vpq = Gp

(

N
∑

s=1

EpsXspqE
†
qs

)

G†
q

(2)

Xspq = KspBsK
†
sq

Xspq is the baseline-dependent source coherency which can be interpreted as the RIME for
a single uncorrupted point source, with B being the 2 x 2 brightness matrix that describes the
polarized sky brightness and Ksp , a scalar K-Jones matrix that represents the geometric phase
delay [7]. Gp and E sp are the Jones matrices that describe the DIEs and DDEs respectively.

For the more general all-sky case, in which the sky has a continuous brightness distribution
that varies with the source direction σ, the RIME becomes,

Vpq = Gp
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(3)

Bpq = EpBE q

The above equation provides insight into how DDEs affect the calibration process and the
dynamic range of the final image. In the case of trivial DDEs, Ep ≡ E , and the apparent sky

Bapp = EBE † is the same for all baselines. Hence the full-sky RIME reduces to the discrete sky
case, eq. (2), in which the paranthesized term is replaced with the sky coherency Xpq = FBapp.

In the case of non-trivial DDEs, the apparent sky varies with baseline and so a simple
Fourier transform does not suffice. Since DDEs are multiplicative errors in the image domain,

3 The two polarization components measured can be either linear or circular as long as the RIME is consistent.
If necessary, 2D matrices for conversion between linear and circular co-ordinate systems can be inserted into the
RIME, as discussed in [7].



by convolution theorem [8], the observed visibility can be written as the convolution of the sky
coherency with the Fourier transforms of the sky-Jones matrices Ep [9]:

Xpq[t] = U p [t] ∗X ∗U †
q
[t] (4)

X = FB,U p [t] = FEp [t]

Thus the observed visibility is actually a sampling of a different uv plane for each baseline pq
and time interval t and the “single common sky” assumption of traditional calibration methods
falls apart. Appplication of non-trivial DDEs in the forward direction is discussed in section 4.

3. MeqTrees and RIME

The MeqTrees software system is discussed in detail in [3]. Each node in MeqTrees receives
a Request object from its parent(s), calls on the child nodes if necessary, does the necessary
computations and returns a Result object. MeqTrees uses directed acyclic graphs or dags4 to
represent mathematical expressions, where all nodes except the root can have one or more parent
nodes. Instead of letting the nodes evaluate to a single real or complex value, MeqTrees allows
MeqNodes to be functions of N variables represented over N-dimensional grids5. Solving for
parameters p1, p2, ..., pk on which any model M(p) depends, is done by adapting a least-squares
method to minimize the χ2 sum and iterating until convergence is reached or a preset number
of iterations are performed (see Eq. 1 in [3]):

χ2(p) =
∑

ij

w2
ij(Dij −Mij(p))

2 (5)

where, D represents the data and wij , the optional weights.
A formulation of RIME like eq. (2) can be easily represented in MeqTrees as shown in Fig. 1.

Such a tree can be constructed for every baseline, with different E-Jones and G-Jones matrices
implemented by independent subtrees. Also, as illustrated in Fig. 2, the brightness matrices
(and hence the source coherency matrices) can be represented as a mixture of point sources,
Gaussian components, FITS images (refer Sec. [3.2]) and shapelets, with arbitrary subtrees
evaluating to each source component Xs. This modularity is one of the biggest strengths of
MeqTrees.

3.1. Simulation and Calibration within MeqTrees
Given an initial sky model and the instrument parameters, the RIME predicts the visibilities
pertaining to an observation. Depending on whether simulation or calibration needs to be
performed, the form that the RIME takes could vary. For simulation, explicit forms of RIME
are used wherein the known physical effects are represented by separate Jones matrices (for a
description of various Jones matrices, refer [3]). Different methods (subtrees) can be employed
to compute the different Jones terms involved.

During calibration, the predicted visibilities are used as models M(p), that are fitted to the
data D, as in eq. (5). In such cases, the Jones terms solved for could end up subsuming multiple
corrupting effects and it is not necessary that they be separable, since we are only interested
in correcting for the overall phase error. These are called phenomenological RIMEs [9]. The
differential gains method that is employed by Smirnov for calibration of the 3C147 field in [10]
is an example of a phenomenological RIME.

4 A directed graph with no directed cycles. Strictly speaking, MeqTrees is MeqDags.
5 In radio astronomy, the independent variables are usually time t and frequency ν.



Figure 1: Implementing the RIME eq. (2)
in MeqTrees. The summation runs over the
index k and pq represents one baseline.

Figure 2: A sample local sky model
consisting of Gaussians, FITS im-
ages and point sources visualized
with Tigger.

3.2. The UVBrick
The UVBrick is a collection of MeqTree nodes that are used to predict the visibilities of extended
sources or of multiple point sources. MeqTrees performs a Discrete Fourier Transform to predict
uv domain data for bright, point sources. For fainter extended sources, the preferred approach
is to use patch images on which a more computationally efficient Fast Fourier Transform [11]
can be performed, so that all sources in the field of view are treated simultaneously. To avoid
aliasing effects the input image is zero-padded.

MeqFFTBrick. The Local Sky Model consists of a set of patch images, with one image per
frequency/brightness plane. The MeqFFTBrick node performs a two-dimensional FFT from the
lm plane to the uv domain for each slice through the frequency and brightness axes. The FFT
is performed using the FFTW library [12].
MeqUVInterpolWave. The MeqUVInterpolWave node has two children; one that receives all
the uvbricks created by MeqFFTBrick and one that reads in the measured uv tracks from
the observation (a Measurement Set). This node then interpolates for the sampled uv points
from the uv grid (Fig. 3) for each requested frequency, by linearly interpolating between the
appropriate uvbricks. This “degridding” is performed using spheroidal convolutional functions
[13]. The interpolation in frequency enables the UVBrick to take any real spectral variation
present in the local sky model into consideration.

Figure 3: Degridding and frequency
interpolation in the UVBrick. The
dotted line represents the sampled uv
points at which the bricks (grids) are
convolved with a spheroidal function.
The vertical axis is the frequency ν.



4. Applying DDEs within UVBrick

Different approaches have been proposed for correcting for non-trivial (both known and
unknown) DDEs, as discussed in [9]. As mentioned earlier, it is possible in MeqTrees to use
the more accurate DFT-based approach in conjunction with the computationally more efficient
FFT-based approach to achieve a fair trade-off between computational cost and accuracy. The
methods discussed here are those which use convolutional functions for handling DDEs.

4.1. W-Projection
One approach that makes use of convolution to handle the non-coplanar baselines problem is
the W-Projection algorithm proposed by Cornwell et al. [14]. The visibility V and the sky
brightness I are related by (see [1]),

V (u, v, w) =

∫

I(l,m)√
1− l2 −m2

e−2πi[ul+vm+w(
√
1−l2−m2−1)] dl dm (6)

where, u, v, w are the baseline components measured in units of wavelength λ of the incoming
radiation and l,m are the direction cosines of the source direction with respect to the phase
centre. Eq. (6) is just another way of writing eq. (3) without explicitly writing out the Jones
matrices. When the value of 2πw(

√
1− l2 −m2− 1) is not ≪ 1, a simple 2D F.T is not enough.

A single interferometer in the “uvw space” no longer measures a single Fourier component in the
“Fourier space”. Frater and Docherty [15] considered the case of a 2D interferometer located
at w 6= 0 and derived the relation for projecting it onto the w = 0 plane using a convolutional
function approach. Cornwell et al. [14] extend this to show that reprojection from/to any
w-plane to/from w = 0 plane is possible:

V (u, v, w) = Gw ∗ Vw=0 (7)

Gw = F (e−2πiw(
√
1−l2−m2−1))

Fig. 4 compares the standard Fourier transform with an image of the same field after W-
Projection.

Since a convolution already exists within UVBrick for degridding, it can be extended to
include the convolution function Gw to account for the Wp term in uvw space. The MeqNBrick
node that is in development aims to handle these w-term effects, by pre-computing a set number
of convolution kernels to be used by MeqUVInterpolWave while degridding.

Figure 4: Results of a 74 MHz simulation [14]. (a) shows the result of a standard Fourier
transform and (b) shows the same image with W-projection applied (128 Gw planes).



4.2. AW-Projection
The W-Projection algorithm was generalized to AW-Projection by Bhatnagar et al [16], in
which they show that similar to how the Wp term is handled using Gw [eq. (7)], the convolution
functions Up [eq. (4)] can be applied to the source coherency X during degridding (in the forward
direction) and corrected for during imaging6. Within UVBrick, the spheroidal function used for
degridding can incorporate the necessary Up matrices as it can the Gw functions. But unlike W-
Projection, where the Gw’s can be computed once before degridding and stored, the convolution
functions Up are not simple analytical expressions and need to be computed on-the-fly by child
nodes and supplied to the node that does the degridding. The UVBrick is expected to be able
to apply arbitrary DDEs by implementing the AW-Projection algorithm in the future.

5. Conclusion

This paper gave a brief introduction to measurement equations and the MeqTrees software
system and how the RIME is implemented within Meqtrees. It also discussed how the MeqTrees
UVBrick module predicts visibilities from a local sky model and can incorporate corrections for
DDEs. As the understanding on applying corrections for non-trivial DDEs improves and new
techniques and algorithms are proposed, they can be implemented within MeqTrees fairly easily
and tested. More information on MeqTrees and measurement equations can be obtained from
[17], [18], [19] and the MeqTrees website: http://www.astron.nl/meqwiki/MeqTrees.

The author would welcome discussions from anyone interested in 3GC in radio astronomy.
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