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Abstract. We apply the soliton description of baryons with a single heavy quark (charm or
bottom). In this approach such baryons emerge as bound composites of a soliton of meson
fields built from light quarks (up, down, strange) and a meson field that contains a heavy
quark. We show that in this case the soliton must then be quantized as a diquark while the
fermionic character arises from binding the heavy meson field. We are particularly interested
in heavy baryons that have non-zero strangeness; in the quark model that corresponds to, say,
up-strange-bottom (usb). Thus the flavor symmetry breaking among the light quarks must
be fully incorporated when constructing diquark states. In the soliton model that symmetry
breaking is parameterized by differences between the masses and decay constants of kaons and
pions. Here we present computations of the diquark eigen-energies and eigen-functions that
incorporates all orders of the light flavor symmetry breaking. We also compare these results to
a leading order treatment of flavor symmetry breaking. The heavy meson couples according to
the heavy spin-flavor symmetry to the chiral field that carries the soliton. In the background
of the soliton the heavy meson field develop bound states. We compute the associated binding
energies. These are the second major ingredient for our prediction of heavy quark baryons.

1. Introduction
There is some interest in the spectrum of baryons with a heavy quark. The light quark part
of the model is formulated in terms of the chiral field U , which is a 3 × 3 matrix in the flavor
space of up, down and strange quarks (q). The interactions of this field are dictated by chiral
symmetry and its spontaneous breaking. In particular we consider the Skyrme model which has
a soliton solution that describes baryons [1]. The heavy quark part is represented by a heavy
meson field that has valence quark content bottom (or charm)–q. The interactions of its heavy
degrees of freedom are governed by the heavy quark effective theory (HQET) [2, 3] while the
light degrees of freedom couple to U in a chirally invariant manner. Thus the model captures
the major symmetries of QCD, the fundamental theory of strong interactions according to which
hadrons form.



2. Skyrme Model
The model is defined by the action which is the sum of three contributions

Γ =

∫
d4x [LSK + LSB] + ΓWZ . (1)

The field variable is the chiral field U , a 3 × 3 matrix that is the non–linear representation of
the pseudoscalar pions, kaons and η. (Mixing between η and η′ is an interesting issue, but not
important in the present context). The Skyrme model Lagrangian also contains chiral symmetry
breaking
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where h.c. stands for Hermitian conjugation and λa (a = 1, . . . , 8) are the eight Gell–Mann
matrices. Finally, the anomaly is included as the Wess–Zumino term. It is an integral

ΓWZ = − iNc

240π2

∫
d5xεµνρστ Tr[αµαναρασατ ] (αµ = U †∂µU) (4)

over a five dimensional manifold whose boundary is Minkowski space. Here NC is the number
of colors in QCD. The Skyrme model is expected to be valid (at least) in the limit NC → ∞.
For actual calculations we use, of course, NC = 3.

The hedgehog is embedded
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[
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]
A†(t) (5)

in SUF (3) with ~λ = (λ1, λ2, λ3). Upon substitution this field configuration into the above defined
action yields the Lagrange function (for NC = 3)
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The coefficients Ecl,...,γ are functionals of the chiral angle F (r). In particular application
of the variational principle onto the classical energy Ecl determines F (r) together with the
boundary conditions F (0) = π and limr→∞ F (r) = 0, suitable for baryon number one. The
information on the collective coordinates A ∈ SU(3) is parameterized via the angular velocities
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3. Coupling of Heavy Mesons
As indicated in the introduction, the heavy mesons couple to the light mesons (parameterized
via the chiral field U) according to chiral symmetry while the interactions of the heavy degrees
of freedom are governed by HQET. The latter requires to treat the pseudoscalar (P ) and vector
components (Qµ) on equal footing. Note that these fields are three component arrays in SUF (3):
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with Qµν = DµQν − DνQµ and the covariant derivative is Dµ = ∂µ − ivµ. Furthermore
M2 = diag(M2,M2,M2

s ) is the matrix containing the square heavy pseudoscalar meson masses.
Likewise, M∗2 stands for the heavy vector meson masses. HEQFT enforces the coefficients of the
two last terms in Eq. (7) in the specific way they are presented. Lorentz and chiral invariance
alone do not relate these two terms. The light (pseudo)vector currents are given by

pµ =
i

2

(
ξ∂µξ

† − ξ†∂µξ
)

and vµ =
i

2

(
ξ∂µξ

† + ξ†∂µξ
)
, (8)

where ξ is the root of the chiral field, i.e. U = ξ · ξ. Substituting the soliton solution into these
currents generates an attractive potential for the heavy mesons fields. The resulting binding
energies will be central to the model prediction for the spectrum of the heavy baryons. The
most strongly bound states are expected in the P–wave channel. The corresponding ansätze
introduce four profile functions
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where χ =

 a1a2
0

 is a space independent spinor in flavor space. In the adiabatic approximation

(A=const.) the field equations then turn into coupled ordinary differential equations for Φ(r)
and Ψ0,1,2(r). We construct solutions with |ε| ≤ M that decay exponentially as r → ∞. This
only occurs for discrete values εi which are the searched–for bound state energies. Finally the
computed profile functions are normalized such that heavy meson field carries unit charge of the
associated flavor[4]. The so constructed bound state contribute
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to the collective coordinate Lagrangian. The symmetry breaking term is the integral
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and QH is the charge of the heavy flavor.1 Furthermore χP is the hyperfine splitting coefficient,
which is also an integral over all profile functions [4]. The ellipsis indicate terms that are
subleading in the combined 1/NC and heavy flavor expansion.

The ansatz, Eq. (9) corresponds to ordinary positive parity baryons. Negative parity baryons
can be described by
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Though in this case the profile functions obey different differential equations leading to different
energy eigenvalues εi and integral2 γB, the form of the Lagrangian, Eq. (10) remains unchanged.

1 That is, QH = 1 if the bound state is occupied but vanishes otherwise.
2 Formally only the factor of Ψ2

2 changes from 1
2

to 2, but the radial functions differ significantly.



4. Quantization in SUF(3)
Quantization is performed canonically, i.e. canonical commutation relations are imposed for the
collective coordinates and their conjugate momenta. This is equivalent to SU(3) commutation
relations for the (right) generators[1]

Ra = − ∂L

∂Ωa
[Ra, Rb] = −ifabcRc , (13)

where L = LSk + LH. The full wave–function of the heavy baryon is the product of the heavy
meson bound state and the wave–function Ψ(A). If it were not for flavor symmetry breaking
(measured) by γ = γS + γB, these were SU(3) D–functions. We include the effects of flavor
symmetry breaking according to the Yabu–Ando method which goes beyond a perturbative
expansion in γ[5]. Before doing so, we need to emphasize the most important consequence of
the heavy meson bound state on the structure of Ψ(A). The angular velocity Ω8 only appears
linearly in the Lagrangian. Hence
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6
QH (14)

is a constraint. Without the heavy meson bound state it requires Ψ(A) to be a wave–function
with half–integer spin. With the bound state Ψ(A) must have integer spin, i.e. the soliton with
spin Js must be quantized as diquark in flavor space for QH = ±1[6].

The Yabu–Ando method requires to find the eigenvalues εSB in(
8∑

a=1

R2
a + γβ2 [1−D88]

)
ΨIJs(A) = εSB(I, Js)ΨIJs(A) (15)

for a given set of soliton spin (Js) and isospin (I) quantum numbers. Without flavor symmetry
breaking the solutions to this eigenvalue equation are elements of a definite SU(3) multiplet.
When the strangeness zero element of such a multiplet is uniquely identified by its isospin
projection I3, the soliton spin, Js is uniquely given by the total isospin of that element.3 The
spin of the baryon is related to the soliton spin as J = Js ± 1

2 .
For a pertinent parameterization of collective coordinates in terms of SU(3) Euler angles the

above eigenvalue equation reduces to ordinary differential equations for just a single angle, the
so–called strangeness changing angle ν[5, 1]. Collecting pieces, the mass of a baryon is
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The constant includes all contributions that are identical for all baryons, such as the classical
energy. Also, we have omitted the hyperfine contribution (related to χP ) because its role in
flavor SU(3) is still under investigation. This will ultimately resolve the ambiguity between J
and Js. Without that, we observe a degeneracy between the J = Js ± 1

2 baryons.

5. Results
In a first step we investigate the eigenvalue equation (15) in the relevant diquark channels. In
the absence of flavor symmetry breaking (γ = 0) the eigenstates are pure SU(3) representation
and the lowest–lying diquarks are within the anti–triplet (Js = 0) and the sextet (Js = 1).
Once symmetry breaking is included admixtures of higher dimensional representations occur.
They can be perturbatively estimated as a power expansion in γβ2[6] or by directly solving
Eq. (15). We compare the results of both procedures in figure 1 as a function of the perturbation



Figure 1. Comparison of second order perturbative (M & S[6]) and exact (numerical) solutions
to Eq. (15).

Flavor ∆εB(MeV) Baryon ∆m (MeV)(exp)
B 257 Λb 293
C 285 Λc 306

Table 1. Mass differences between S and P-wave compared to mass differences between heavy
baryons of opposite parity.

parameter. In case of the eigenvalues we present results for all interesting spin and isospin
channels. For γβ2 ≥ 6 we observe sizeable deviations from the second order perturbation
calculation. This requires to extend that calculation to third or even higher order. That would be
cumbersome since the number of the required SU(3) Glesch–Gordan coefficients is approximately
proportional to the factorial of the order. On the other hand, the effort in numerically integrating
Eq. (15) is independent of the value of γβ2.4 For the wave–functions we restrain ourselves to
display the variation with the strangeness changing angle for Js = 1, I = 1

2 channel that involves
two functions and would be a member of the sextet at zero symmetry breaking. As γβ2 increases,
the wave–functions get more pronounced at smaller values of the strangeness changing angle.
This is to be expected because the probability to rotate into strangeness direction decreases with
the mass of the strangeness carrying fields.

Of course, γβ2 is not a parameter to be chosen. Rather, once the model parameters are
fixed, it is a prediction as both factors are functionals of the chiral angle F (r). The parameters
entering the Skyrme model action, Eq. (1) are taken from meson properties as far as possible:
fπ = 93MeV, fK = 1.22fπ, mπ = 138MeV and mK = 495MeV. Though the Skyrme constant
e could be related to pion–pion scattering, this does not give a sufficiently definite value and
also other terms from the chiral expansion would contribute. Therefore we use e ≈ 5 that
reasonably reproduces the ∆–nucleon mass difference[1]. For the masses of the heavy mesons we
take M = 1865MeV, M∗ = 2007MeV, M = 1969MeV and M = 2106MeV in the charm sector
or M = 5279MeV, M∗ = 5325MeV, M = 5367MeV and M = 5416MeV in the bottom sector[8].
The coupling constant for the interaction between heavy and light mesons is estimated from
heavy meson radiative decays d ≈ 0.53[7].

The P and S channel bound states correspond to heavy baryons of opposite parities. Hence
the differences should be compared to the mass difference of the observed Λc,b with positive and
negative parity. This comparison is shown in table 1 and yields satisfactory results.

Having not yet finalized the investigation of hyperfine splitting in the context of flavor SU(3)
we can only compare predictions for Js = 0, as it unambiguously is associated with total spin

3 This feature persists when flavor symmetry breaking is included.
4 At very large values, the boundary solutions require some care.



I P Model PDG
0 - 308 308
1
2 + 88 151
1
2 - 408 503

Table 2. Comparison of model predictions to experiment (PDG [8]) for mass differences of
charmed baryons with respect to Λc. Note that the PDG has not determined the JP quantum
numbers but adopted them from the non–relativistic quark model.

J = 1
2 . For the charm sector this is shown in table 2. Our predictions are in the right ball park,

though the mass difference between the Λc and the Ξc ’s is somewhat underestimated.
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