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Abstract. The results of calculation for the scattering length for the collision of a 4He atom with a 4He7Li
dimer are presented. These investigations are based on the hard-core version of the Faddeev differential
equations.

1. Introduction
Weakly bound small atomic clusters attracted considerable attention in recent years especially due to
the possibility to observe states of Efimov nature [1]. The interaction between neutral atoms is of the
short-range van-der-Waals type and in some cases can almost or just barely support a weakly two-body
bound state. In such a cases the scattering length will be much larger than the effective range of the
interaction. Efimov discovered that in a three-body system an effective long-range attraction arises, and
this attraction may support an infinite number of bound states. The binding energy of these states is
arranged in a geometric series with an accumulation point at zero energy threshold. The energies of
the Efimov levels are universally related and this relation does not depend on the form of the pair-wise
interactions in the three-body system [2].

One of a promising atomic species for observing Efimov states is 4He three-atomic cluster. The
interaction between two helium atoms is quite small and supports only one bound state with the energy
about 1mK and so a very large scattering length around 100 Å. An excited state of Efimov nature in
helium trimer was theoretically predicted (see, [3, 4] and refs. therein). Most recently this has been
brilliantly confirmed experimentally using the combination of Coulomb explosion imaging with cluster
mass selection by matter-wave diffraction [5].

The implementation of magnetic Feshbach resonances in ultracold atoms experiments gives a
possibility to change the scattering length by simply varying the strength of an applied magnetic field.
The first observation of Efimov-type resonance in an ultracold gas of cesium atoms has been reported
in [6]. Experimentally, in [6] Efimov resonance was observed as a giant three-body recombination
loss when the intensity of the magnetic field and so the strength of the two-body interaction was varied.
Striking manifestations of the Efimov effect have been predicted for three-body recombination processes
in ultracold gases with tunable two-body interactions in [7, 8]. Although in this experiment only one
Efimov resonance was observed, recently the second Efimov level has been measured using the same
technique [9]. Now it has become possible to study Efimov effect in many other atomic systems
[10, 11, 12, 13, 14, 15]. Review of the latest theoretical and experimental advances in Efimov physics
can be found in [16].

There is a growing interest in the study of He2 - Alkali van-der-Waals systems, which are expected to
be of Efimov nature. As in case of a 4He dimer, the He - alkali-atom interactions also support a single



weakly bound state. So, in the triatomic 4He2Li system one can expect the existence of Efimov levels
and a large He - HeLi scattering length which is investigated in this work.

2. Method
In describing a three-atomic system we use the standard reduced Jacobi coordinates xxxα ,yyyα , α = 1,2,3,
expressed in terms of the position vectors of the atoms rrrα and their masses mα [17]:

xxxα =

[
2mβ mγ

mβ +mγ

]1/2

(rrrβ − rrrγ)

(1)

yyyα =

[
2mα(mβ +mγ)

mα +mβ +mγ

]1/2(
rrrα −

mβ rrrβ +mγrrrγ

mβ +mγ

)
,

where (α,β ,γ) stand for a cyclic permutation of the atom numbers (1,2,3). The coordinates xxxα ,yyyα
determine the six-dimensional vector X ≡ (xxxα ,yyyα). Relations between them are given by orthogonal
transform Jacobi vectors with different α

xxxβ = cβαxxxα + sβαyyyα , yyyβ =−sβαxxxα + cβαyyyα , (2)

where

cαβ = −
(

mαmβ

(mα +mβ )(mβ +mγ)

)1/2

,

sαβ = (−1)β−α sign(β −α)
(

1− c2
αβ

)1/2
.

In the following the Helium atoms are assigned the numbers 1 and 3 while the Lithium atom has the
number 2. Since two atoms of 4He are identical bosons the corresponding Faddeev component F2(xxx2,yyy2)
is invariant under the permutation of the 1 and 3 particles

F2(−xxx2,yyy2) = F2(xxx2,yyy2). (3)

The identity of the two 4He atoms also implies that the Faddeev components F1(xxx1,yyy1) and F3(xxx3,yyy3)
are obtained from each other by a simple rotation of the coordinate space. Thus, we only have two
independent Faddeev components: F2(xxx,yyy), which is associated with the 4He–4He subsystem, and
F1(xxx,yyy) - associated with a pair of Li and 4He atoms. The resulting hard-core Faddeev equations read

(−∆xxxα −∆yyyα −E)Fα(xxxα ,yyyα) =

{
0, |xxxα |< c

−Vα(xxxα)Ψ(α)(xxxα ,yyyα), |xxxα |> c
, (4)

Ψ(α)(xxxα ,yyyα)
∣∣∣
|xxxα |=c

= 0, (5)

α = 1,2,

where Ψ(1) and Ψ(2) denote the total wave function Ψ(X) of the Li4He2-system written in terms of the
Faddeev components F1 and F2 in coordinates xxx1,yyy1, and xxx2,yyy2, respectively (see [18, 19]). By c we
denote the hard-core radius. This radius was taken the same (in coordinates xxxα ) for all three inter-atomic
interaction potentials and was chosen in such a way that any further decrease of it does not affect the
trimer ground-state energy. A detailed description of the Faddeev differential equations in the hard-core
model in case of symmetric helium trimer can be found in [18]. By V1 we denote the interatomic Li–He
potential and V2 - the He–He potential adjusted to the corresponding reduced Jacobi coordinates xxx1 and
xxx2, respectively.



In the present investigation, we apply the above formalism to the 7Li4He2 three-atomic systems with
total angular momentum L = 0. Expanding the functions F1 and F2 in a series of bispherical harmonics
we have

Fα(xxx,yyy) = ∑
l

f (α)
l (x,y)

xy
Yll0(x̂, ŷ), α = 1,2, (6)

where x = |xxx|, y = |yyy|, x̂ = xxx/x, and ŷ = yyy/y. As a result the equations (4) and boundary conditions (5)
are transformed to the following partial integro-differential equations(

− ∂ 2

∂x2 −
∂ 2

∂y2 + l(l +1)
(

1
x2 +

1
y2

)
−E

)
f (α)
l (x,y)

=

{
0, x < c

−Vα(x)ψ
(α)
l (x,y), x > c

, α = 1,2, (7)

and partial boundary conditions

ψ(α)
l (x,y)

∣∣∣
x=c

= 0, α = 1,2. (8)

The partial wave functions ψ(α)
l , α = 1,2, read as follows

ψ(α)
l (x,y) = f (α)

l (x,y)+ ∑
l′,β ̸=α

1∫
0

dηh0
(α;ll0)(β ;l′l′0)(x,y,η) f (β )l′ (xβα(η),yβα(η))

where (cf. [17])

hL
(α;lλL)(β ;l′λ ′L)(x,y,η) =

xy
xβα(η)yβα(η)

(−1)l+L (2λ +1)(2l +1)
2λ+l

[
(2λ )!(2l)!(2λ ′+1)(2l′+1)

]1/2

×
kmax

∑
k=0

(−1)k(2k+1)Pk(η) ∑
λ1+λ2=λ ,
l1+l2=l

yλ1+l1xλ2+l2

[yβα(η)]λ [xβα(η)]l
(−1)λ1cβα

λ1+l2sβα
λ2+l1

× [(2λ1)!(2l1)!(2λ2)!(2l2)!]
−1/2 ∑

λ ′′l′′
(2λ ′′+1)(2l′′+1)

(
λ1 l1 λ ′′

0 0 0

)
(9)

×
(

λ2 l2 l′′

0 0 0

)(
k λ ′′ λ ′

0 0 0

)(
k l′′ l′

0 0 0

)

×
{

l′ λ ′ L
λ ′′ l′′ k

} λ1 λ2 λ
l1 l2 l
λ ′′ l′′ L

 ,

kmax =
1
2
(l +λ + l′+λ ′).

Here Pk(η) is the Legendre polynomial of order k. The standard notation for the 3- j, 6- j, and 9- j Wigner
symbols are used. We also use the notation

xβα(η) =
√
c2

βαx2 +2cβαsβαxyη + s2
βαy, yβα(η) =

√
s2

βαx−2cβαsβαxyη + c2
βαy.



The asymptotic boundary condition for the partial-wave Faddeev components of the scattering wave
function for ρ =

√
x2 + y2 → ∞ and/or y → ∞ reads as follows (cf. [20])

f (α)
l (x,y, p) = δl0ψ(α)

d (x)
{

sin(py)+ exp(ipy)
[
a(α)

0 (p)+o
(
y−1/2

)]}
+

exp(i
√

Eρ)
√ρ

[
A(α)

l (E,θ)+o
(

ρ−1/2
)] , (10)

where p =

√
E − ε(α)

d is the momentum conjugate to the coordinate y and E is the scattering energy.

ε(α)
d stands for the correspondent dimer energy while ψ(α)

d (x) denotes the dimer wave function which is
assumed to be zero within the core, that is, ψ(α)

d (x) ≡ 0 for x ≤ c. The coefficient a(α)
0 (p) is the elastic

scattering amplitude and A(α)
l (E,θ) are the corresponding partial-wave Faddeev breakup amplitudes.

The 4He – 4He7Li scattering length ℓsc is given by

ℓsc =−
√

m1 +m2 +m3

2m1(m2 +m3)
lim
p → 0

a(1)0 (p)
p

. (11)

Here we only deal with a finite number of equations (7), assuming l ≤ lmax where lmax is a certain non-
negative integer. As in [18, 19] we use a finite-difference approximation of the boundary-value problem
(7), (8), (10) in the polar coordinates ρ and θ . The grids are chosen such that the points of intersection
of the arcs ρ = ρi, i = 1,2, . . . ,Nρ and the rays θ = θ j, j = 1,2, . . . ,Nθ with the core boundary x = c
constitute the knots. The value of the core radius is chosen to be c = 1 Å by the argument given in [19].
We also follow the same method for choosing the grid radii ρi (and, thus, the grid hyperangles θ j) as
described in [18, 19] in details. Atomic masses of the isotopes are taken from [21].

3. Results and Discussion
Our calculations are based on the semi-empirical LM2M2 [22] potential by Aziz and Slaman for He-He
interaction, and the theoretically derived KTTY [23] potential by Kleinekathöfer, Tang, Toennies and Yiu
for Li-He interaction with more accurate coefficients taken from [24]. Both of these potentials are widely
used in the literature and presented in Fig. 1 as well as all other He - Alkali atom KTTY potentials from
[24]. It is clearly seen that He-Alkali atom potentials become much shallower and wider with increasing
mass of alkali atom. Calculated values of the binding energy for correspondent dimers are presented in
Table 1. All He-Alkali dimers are weakly bound and in the case of HeLi and HeCs systems, the binding
energy is of the same order as in helium dimer. It gives an indication on possible existence of Efimov
states in correspondent He2 - Alkali atom triatomic systems. Indeed, in calculations [25, 26, 27, 28, 29]
the excited state with the energy very close to the LiHe threshold has been found. However, different
methods demonstrate a large discrepancy between the results (see Table 1 of [28] or Table II of [29]).
The energy levels of He2Li trimer are found to be very sensitive to the details of the numerical methods
and the interaction potentials. We can conclude that this triatomic system is much more complicated for
investigation than the helium trimer studied previously [3, 4].

The scattering length calculations are very sensitive to the grid parameters. To investigate this
sensitivity we calculate the scattering length with increasing cutoff hyperradius ρmax up to 500 Å and
increasing grid numbers N ≡ Nρ = Nθ up to 2500. The value of lmax has been increased up to 4. The
results for the 4He -4He7Li scattering length ℓsc as a function of the grid dimension N are presented in
Fig.2. Convergence of the scattering length value is essentially achieved for N ∼ 2500. Increasing values
of the cutoff hyperradius ρmax from 250 Å to 500 Å change the value of ℓsc by 2%. Taking into account
partial angular momentum lmax = 2 increase the scattering length by 10% while lmax = 4 gives only 2%
. As a result, we found that the 4He -4He7Li scattering length for the LM2M2 and KTTY potentials is
negative and equals -267 Å for the largest grid that we could achieve. The large value of the scattering



Figure 1. The He–He LM2M2 potential and He - Alkali atoms KTTY potentials V (in K) as a function
of the interatomic distance r (in Å).
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Figure 2. The 4He -4He7Li scattering length ℓsc(Å) as a function of the grid dimension N ≡ Nρ = Nθ .
The curves presented are distinguished by the value of the cutoff hyperradius. The upper curve shows
the results obtained for lmax = 2, other curves correspond to lmax = 0.



Table 1. Absolute values of dimer energies |εd | (in mK) for He-He and 4He−Alkali atom for the
potentials used.

Dimer |εd | (mK) Dimer |εd | (mK)
4He3He – 4He23Na 28.97
4He4He 1.310 4He39K 11.20
4He6Li 1.512 4He85Rb 10.27
4He7Li 5.617 4He133Cs 4.945

length supports the assumption that 4He2
7Li is the system of Efimov type. The negative sign means that

this system is more likely to have the virtual state than the excited state. However, it could also mean
that asymptotic behavior at used cutoff hyperradius ∼ 500 Å has not yet started. Studying of this fact
requires further investigation.

In conclusion, the results of calculation of the scattering length for the collision of a 4He atom on a
4He7Li dimer are presented. Its large value indicates that 4He2

7Li system is of Efimov type.
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