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Abstract. Electron-induced proton knock-out process from the 4He nucleus is investigated.
Bound states of the systems are described with the angular-momentum-projected and parity-
projected antisymmetrized molecular dynamics wave functions. The nuclear Hamiltonian is
constructed with a semi-realistic nucleon-nucleon potential. Non-relativistic nuclear charge
and current operators are employed in calculating nuclear transition amplitudes. Final-state
interactions are taken into account by the use of the Glauber approximation. It is found that
the antisymmetrized molecular dynamics generates a very good description of experimental data
at high momentum transfer.

1. Introduction
Quasielastic electron-nucleon scattering is a very useful tool to extract important information
about nuclear structure [1]. This is based on the fact that the interaction of the electrons and
nuclei is predominantly electromagnetic and the theory underlying electromagnetic interactions,
quantum electrodynamics theory, is well understood. Furthermore, the electromagnetic
interactions are a lot weaker than nuclear interactions, and thus can be treated as a small
perturbation to the nuclear Hamiltonian. Therefore, only one-photon exchange processes are
dominant. In the one-photon approximation the electron and nuclear structure functions factor
out completely in the transition form factor. Therefore, the only input quantities requiring
careful construction are the nuclear wave functions. In this work the antisymmetrized molecular
dynamics (AMD) to construct wave functions for bound nuclear systems to study proton knock-
out process 4He(e, e′ p)3H.

The AMD approach was developed [2] from the Time-Dependent Cluster Model [3] for the
study of fermionic systems. This approach combines Fermi-Dirac statistics with elementary
quantum mechanics to treat the motion of particles in a system [4]. However, the model is not
fully quantum mechanical and does not assume a shell structure for the system. The AMD
approach was used to study the dynamics of heavy-ion collisions [5] and elastic proton-nucleus
scattering [6]. Clustering in nuclei as well as angular distributions of scattered protons in proton-
nucleus scattering can be explained by the AMD model [6]. Improved AMD wave functions have
been shown to give satisfactory predictions of properties of few-body systems [7, 8]. In this work
we use the parity-projected and angular-momentum-projected AMD [9].

In Section 2 key features of the AMD approach are summarized. In this section the
construction of the wave function, the equations of motion of the variable parameters and the



variational technique used are briefly outlined. Basic features of the electron-nucleus scattering
formalism are given in Section 3. In Section 4 the theoretical results are compared with some
experimental data for the proton knock-out from the 4He nucleus. Conclusions drawn are
indicated in Section 5.

2. AMD Formalism
An AMD wave function describing a bound nuclear system of A nucleons is constructed as a
Slater determinant

ΨAMD(~S) =
1√
A!

det[φj(α,~si), χj(~σi), ξj(~τi) ] (1)

where φ, χ and ξ are, respectively, the spatial, spin and isospin components of the single-particle
wave functions. A wave function with definite parity (π) and total angular momentum (J), with
total angular momentum projection (M) onto the quantization axis, is constructed from the
AMD wave function as

ΨJπ
MK(~S) =

1

2
P J
MK(Ω) [ 1± P π ] ΨAMD(~S) (2)

where P J
MK(Ω) is the angular momentum projection operator, P π the parity projection operator

and ~S ≡ {~s1, ~s2, ~s3, . . . , ~sA}. The angular momentum projection operator is defined by [10]

P J
MK(Ω) =

2J + 1

8π2

∫

dΩDJ∗
MK(Ω) R̂(Ω) (3)

where DJ
MK(Ω) is the Wigner D-function, R̂(Ω) the rotation operator and Ω ≡ {α, β, γ} the

Euler rotation angles.
The single nucleon wave functions are given by

ψi(~rj) =

(

2α

π

)2/4

exp

[

−α
(

~rj −
~si(t)√
α

)2

+
1

2
~s2i (t)

]

⊗ χi ⊗ ξi (4)

where χi ⊗ ξi are time-independent spin-isospin states of the i-th nucleon. These states are
compactly expressed in the form κi = {N ↑ or N ↓ } for nucleon with spin-up or spin-down. The
Gaussian width parameter α is a real constant and the variational parameter ~s(t) is complex.
The time-dependent variational principle [5]

δ

∫ t2

t1

〈Ψ(~S) | ih̄ ∂
∂ t −H |Ψ(~S) 〉

〈Ψ(~S) |Ψ(~S) 〉
dt = 0 (5)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 . (6)

is used to determine the dynamical equations for the variational parameters. The resulting
equations are solved to minimizes the variational energy

EJ±
0

(~S, ~S∗) =
〈ΨJ±

MK(~S)|H |ΨJ±
MK(~S) 〉

〈ΨJ±
MK(~S)|ΨJ±

MK(~S) 〉
. (7)

of the nucleus and also determine the variational parameters. The Hamiltonian of the system
is constructed with the AV4 NN potential including the VC1(r) Coulomb component [11]. The
evaluation of the components of the energy expectation values is explained in Ref. [12, 13].



The wave function describing a nucleon separation from a nucleus is written in the form [13]

Ψ~S(~r1, ~r2, . . . , ~rA) =
1√
A!
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where nucleon A is the one ejected, ~ri the position vector of the i-th nucleon and ψA(~r) a plane

wave. The G(~R) is the Glauber multiple-scattering operator which approximates the final state
interaction (FSI). This operator is given by [14]

G(~R) =
A−1
∏

j=1

[

1− Γ(~bA −~bj) θ(zj − zA)
]

(9)

where θ(z) is the step function and Γ(~b) the nucleon-nucleon scattering profile function. The
profile function is given by

Γ(~b) =
σNN (1− i ǫNN )

4π β2NN

exp

[

− b2

2β2NN

]

. (10)

where the vector ~B is defined through the notation ~rn = ~bn + ~̂q zn. The parameters σNN , ǫNN

and βNN are determined by fitting Γ(~b) to nucleon-nucleon scattering experimental data at
some invariant energy. The first three terms of the Glauber operator considered in this work
are illustrated in figure 1.

(a)

~p1

~p′
1

AX

~q

A−1Y

~px

~PA
~PA−1

(b)

~p2

~p′
1

~p′
2

~p1

AX

~q

A−1Y

~px

~PA
~PA−1

(c) ~q

~p2

~p3

~p′
1

~p′′
1

~p′
2

~p′
3

~p1

AX
A−1Y

~px

~PA
~PA−1

Figure 1. Feynman diagram vertex for a nucleon removal from the AX nucleus. The free nucleon
(a) does not interact with the nucleons (b) interacts with single nucleons and (c) interacts with
pairs of nucleons, in the recoil nucleus A−1Y.



3. Inclusive Electron-nucleus scattering
Consider an electron with an initial energy Ei and momentum ~ki interacting with a nucleus with
initial energy Ei and momentum ~Pi. The electron transfers a photon of energy and momentum
(ω, ~q) to the nucleus and scatters with final energy and momentum (Ef , ~kf ) at an angle θe.

The final state of the nucleon system recoils with energy and momentum (Ef , ~Pf ). In the
case of a nucleon knock-out, the energy and momentum of the ejected nucleon are denoted by
(Ex, ~px). The interaction of relativistic electrons with nuclei is well described by the impulse
approximation.

The differential cross-section for inclusive electron-nucleus scattering, in the one photon

approximation, is given by [1]

d2σ

dEf dΩe
= σM





(

Q2

q2

)2

RL(ω, ~q) +

(

Q2

2 q2
+ tan2

θe
2

)

RT (ω, ~q)



 (11)

where Q2 = q2 − ω2, σM is the Mott differential cross section and RL(~q, ω) (RT (~q, ω)) the
longitudinal (transverse) nuclear response function. The transverse response is given by

RT (~q, ω) =
1

2Ji + 1

∑

f

∣

∣

∣〈 Jπf

f Mf |~j⊥(~q, ω) |Jπi

i Mi 〉
∣

∣

∣

2

δ (ω −∆E ) (12)

where |Jπi

i Mi 〉 is the initial state of the target nucleus with parity πi, angular momentum Ji,

angular momentum projection Mi along the quantization axis, and ~j⊥(~q, ω) the components of
the nuclear current operator that are perpendicular to ~q. The coordinate system is oriented
such that ~q is directed along the z-axis, which is also chosen to be the quantization axis. For
the function RL(~q, ω) the nuclear charge operator ρ(~q, ω) is used in the place of ~j⊥(~q, ω). The
delta function expresses the conservation of energy with ∆E = Tp + TA−1 + ∆M , where Tp
(TA−1) is the non-relativistic energy of the proton (recoil nucleus) and ∆M =MA−MA−1−Mx

the separation energy of a proton (mass Mx) from the target nucleus (mass MA). The nuclear
charge and current operators used in this work are of the form [15]

ρ(~q, ω) =
q

Q
Gx

E(Q
2) +

i

4M2
x

2Gx
M (Q2)−Gx

E(Q
2)√

1 + η
~σx · ~q × ~px (13)

~j(~q, ω) =

√
η

q

[

(

2Gx
E(Q

2) + η Gx
M (Q2)

)

~px − iGx
M (Q2)

(

~q × ~σx +
ω

2Mx

~̂q · ~σx ~̂q × ~px

)]

(14)

where ~̂q = ~q/|~q|, η = Q2/4M2
x and Gx

E (Gx
M ) the nucleon Sachs electric (magnetic) form factor.

For the Sachs form factors the phenomenological parametrization derived in Ref. [16] is adopted.

4. The 4He(e,e′ p)3H reaction
The longitudinal and transverse response function for the inclusive 4He(e,e′ p)3H process are
calculated for the kinematics of the experimental results presented in reference [17]. To evaluate
the response functions it is convenient to decompose the initial state of the target in the form

|Jπi

i Mi 〉A =
∑

mp

〈jpmp JoMo|JiMi 〉[
∣

∣

∣jπp
p mp

〉

⊗ |Jπo

o Mo 〉A−1
] (15)

where
∣

∣j
πp
p mp

〉

is the proton initial state and 〈jpmp JoMo|JiMi 〉 Clebsch-Gordan coefficients.
The theoretical results are compared with experimental data for q = 300MeV/c, q = 400
MeV/c and q = 500MeV/c in figure 2. PWIA results are also shown and compared with the
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Figure 2. The longitudinal (RL) and transverse (RT ) response function for the 4He nucleus
at q = 400MeV/c, q = 400MeV/c and q = 500MeV/c. The experimental data are from
reference [17].

results that include FSIs. The results of the longitudinal response function RL(~q, ω) reproduce
the general structure of the experimental data for all the values of q, with the size of the
peak decreasing as q increases. For values of Em = ω > 100MeV the theoretical results
reproduce the experimental data satisfactorily. However, for ω < 100MeV the theoretical results
overestimate the experimental data. The discrepancy between theory and experiment decreases
as q increases. The contributions of the FSI to the theoretical response functions decrease the
disparity between theory and experiment. The theoretical results for the transverse response
functions RT (~q, ω) overestimate the experimental data at low energy transfers. The transverse
response is generally well predicted. The AMD results are consistent with the theoretical results
presented in reference [17].

5. Conclusions
The AMD approach was used to investigate the electron-induced proton knock-out process
in the 4He nucleus. FSI between the ejected proton and the recoil nucleus are included
using the Glauber approximation. Transverse and longitudinal response function the two-body
electrodisintegration at high missing momenta where calculated. The AMD results gave a very
good description of the experimental data. It was observed that the inclusion of FSI in general,
improves the agreement between theory and experiment. Furthermore, the AMD results are
consistent with results obtained using other theoretical methods. Therefore, AMD provide a
simple yet accurate bound-state wave functions to of nuclear systems.
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