
Tsallis entropy and quantum uncertainty in

information measurement

Mhlambululi Mafu1, Francesco Petruccione 1,2

1 Centre for Quantum Technology, School of Chemistry and Physics, University of
KwaZulu-Natal, P/Bag X54001 Durban 4000, South Africa
2 National Institute for Theoretical Physics, School of Chemistry and Physics, University of
KwaZulu-Natal, P/Bag X54001 Durban 4000, South Africa

E-mail: 209526077@stu.ukzn.ac.za, petruccione@ukzn.ac.za

Abstract. The Tsallis entropy defines an important generalization of the usual concept of
entropy which depends on parameter α. Our goal is to establish a connection between the
quantum uncertainty principle and the Tsallis entropy for single discrete observables. In
particular, we show that there exist a generalized uncertainty bound reached in order to
appropriately express the quantum uncertainty principle in terms of the Tsallis entropy. This
kind of connection forms an initial important step towards finding an important application of
this α-entropy in the area of quantum communication for which they have not been extensively
investigated.

1. Introduction
Depending on the application, a number of entropic forms [1] and uncertainty relations [2, 3, 4]
have been derived. Amongst entropies, the most important and greatly studied entropy that
has even found major applications is the Shannon entropy [5]. The first uncertainty relation was
derived by Hirschman [6]. It was a position-momentum relation which is based on the Shannon
entropy. Since then, many generalizations or versions of the Shannon entropy have already been
found. One of the generalizations of the Shannon entropy is the Tsallis entropy [7]. The Tsallis
entropy has again found many interdisciplinary applications [8]. Furthermore, it was found that
the Tsallis and the Shannon entropy can be connected by means of some transformation [8].
Therefore, to some extent this connection shows a possibility of interchangeability between these
two entropies, only up to some bound. Recently, the entropic uncertainty relations have found
applications in quantum cryptography [9, 10]. We highlight that such applications in quantum
information are based on properties of the Shannon entropy. However, the Tsallis entropy has
not been utilized in such applications. A major difference exists between the Shannon and the
Tsallis entropy, i.e., the Shannon entropy is additive for independent probability distributions
while the Tsallis entropy is non-additive [11]. Therefore, this difference proves to be a challenge
in trying to immediately connect the Tsallis entropy to these applications.

After being introduced by Havrda and Charvát in 1967 [12] and later studied by Darcózy in
1970 [13], it was in 1988 when Tsallis [7] exploited its features and placed a physical meaning on
this entropy. Therefore, this entropy is now known as the Tsallis entropy. On the other hand,
the Heisenberg uncertainty principle [14] forms one of the most developed results of quantum
theory. In particular, Robertson showed that a product of the two standard deviations of



two discrete observables A and B measured in the quantum state |ψ〉 is bounded from below
[15]. This can be expressed as 4A · 4B ≥ 1

2 |〈ψ|[A,B]|ψ〉|. This result was improved by
Deutsch in 1983 [16]. However, this improved result by Deutsch was conjectured by Kraus [17]
and later proved by Maassen and Uffink [18]. Recently, it has also been observed that this
Robertson’s bound does not express all the features expected from an uncertainty relation if
the observables A and B are finite [19]. Despite of this major difference in the non-additivity
property for independent probability distributions of the Tsallis entropy, it is the object of
this paper to explicitly show a bound and subsequently a possible extension of the application
for Tsallis entropies to physical processes in quantum information specifically on quantum key
distribution.Therefore, we establish a connection between the quantum uncertainty principle and
the Tsallis entropy for single discrete observables. We also show an immediate application of
the Tsallis entropies on how they can be useful in quantifying information especially in quantum
key distribution.

2. Tsallis entropy
For a probability distribution, pi on a finite set, the Tsallis entropy, Sα(pi) of order α is defined
as [7]

Sα(pi) =
1

1− α
∑
i

pαi − 1, (1)

where 0 < α < ∞. At α = 1, Sα(pi) does not exist, therefore we use the L’Hopitals
rule to show that the Tsallis entropy approaches the Shannon entropy as α 7→ 1, i.e.,
limα 7→1 Sα(pi) = −

∑
i pi ln pi which is the Shannon entropy [5]. In particular, there is also

a close relationship between the Rényi entropy and the Tsallis entropy written as

Hα(pi) =
1

1− α
ln(1 + (1− α)Sα(pi)). (2)

where Hα(pi) is the Rényi entropy. However a major difference exists, the Shannon and Rényi
entropies are additive whilst the Tsallis entropy is pseudo-additive. This pseudo-additivity
property in general is defined as

Sα(pi, pj) = Sα(pi) + Sα(pj) + (1− α)Sα(pi)Sα(pj), (3)

where pi and pj are distributions for independent random variables A and B respectively.
In order to arrive at our goal, we start by summarizing the result of Ref [16]. Of importance,

Deutsch established that the generalized Heisenberg inequality does not properly express the
quantum uncertainty principle except in the canonically conjugate observables. In general, he
found that in order to properly quantify the quantum uncertainty principle, there exists an
irreducible lower bound in the result of uncertainty of a measurement. This can be written
quantitatively as

U(Â, B̂;ψ) ≥ B(Â, B̂), (4)

where U is the uncertainty in the measurement of Â and B̂ which are simultaneously prepared or
measured observables, |ψ〉 is the outcome state and B is the irreducible lower bound as according

to Ref [16]. The function U(Â, B̂) depends only on the state |ψ〉 and the sets {|a〉} and {|b〉}
while B(Â, B̂) depends on the set {〈a|b〉} of eigenstates of A and B respectively.

Based on Ref [16], the most natural measure of uncertainty is the result of a measurement
or preparation of a single discrete observable which can be expressed in the entropic form as

SÂ(|ψ〉) = −
∑
a

|〈a|ψ〉|2 ln |〈a|ψ〉|2, (5)



We recognize that the right hand side of Equation (5) is expressed in terms of the Shannon’s

entropy where, pi = |〈ai|ψ〉|2 and pj = |〈bj |ψ〉|2 are projectors of |ψ〉 on Â and B̂ respectively.
However it has been shown in Ref [17] that

U(Â, B̂;ψ) ≥ 2 ln
1

1 + c
, (6)

where c = maxij |〈ai|bj〉|. However, as stated previously that this bound was later improved by
Maassen and Uffink [18] for which they obtained

U(Â, B̂;ψ) ≥ 2 ln
1

c
, (7)

by considering measurements from two mutually unbiased bases.
Therefore, our aim to investigate whether the non-extensivity property of the Tsallis entropy

will ever make a difference on the requirements of B instead of using the Shannon entropy.
However, surprisingly, we reach a bound which can be expressed in a similar manner as in Ref
[16].

We consider two observables Â and B̂ which are simultaneously measured or prepared and
a state |ψ〉 which represents the outcome of a measurement or preparation. Therefore, for our

scenario in order to find the bound on B(Â, B̂) we relate this function to the additivity of Tsallis
entropy instead of using additivity of Shannon entropy and without loss of generality we write

B(Â, B̂;ψ) = Sα(Â;ψ) + Sα(B̂;ψ) + (1− α)Sα(Â;ψ)Sα(B̂;ψ). (8)

Now we calculate the bound B by using the Tsallis entropy as an information measure. We
proceed as follows

B(Â, B̂;ψ) = −
∑
a

|〈ψ|a〉|2 ln |〈ψ|a〉|2 −
∑
b

|〈ψ|b〉|2 ln |〈ψ|b〉|2

+ (1− α)
∑
a

|〈ψ|a〉|2 ln |〈ψ|a〉|2
∑
b

|〈ψ|b〉|2 ln |〈ψ|b〉|2

= −
∑
ab

|〈ψ|a〉|2|〈ψ|b〉|2[ln |〈ψ|a〉|2 + ln |〈ψ|b〉|2)− (1− α) ln |〈ψ|a〉|2 ln |〈ψ|b〉|2].(9)

In order to maximize Equation (9), we perform the following operations:

B(Â, B̂;ψ) = max
|ψ〉
|〈ψ|a〉〈b|ψ〉|

= |〈ψ|
(
|a〉〈a|+ |b〉〈b|

2

)
|ψ〉|.

(10)

Our task now is to calculate the maximum eigenvalue of the expression in Equation (10). We
apply the substitution

|a〉 =

(
1
0

)
, |b〉 =

(
cos θe−iα

sin θ

)
in Equation (10) and arrive at an expression of the from

|〈ψ|
(
|a〉〈a|+ |b〉〈b|

2

)
|ψ〉| =

1

2

(
1 0
0 0

)
+

(
cos2 θ cos θ sin θe−α

sin θ cos θe−iα cos2 θ

)
=

1
2

+
sin θ cosα

2
X − sin θ cos θ sinα

2
Y +

cos2 θ

2
Z, (11)



where X, Y and Z are the Pauli matrices.
Theorem: If we consider M = a1+bX+cY +dZ where a, b, c, d ∈ R+ where the eigenvalues

of (M) = a±
√
b2 + c2 + d2.

Based on Equation (9) find that a = 1
2 , b

2 = sin2 θ cos2 θ cos2 α
4 , c2 = sin2 θ cos2 θ sin2 α

4 and

d2 = cos4 θ
4 . By substitution and some few algebraic steps we arrive at the value of

(M) =
1

2
± cos θ

2
. (12)

The maximum eigenvalue of |ψ〉 = (1 + cos θ)/2 occurs midway between |a〉 and |b〉. Therefore,
we can express this as a function

f(a, b) = B(Â, B̂) = −2 ln

[
1 + 〈a|b〉

2

]
= 2 ln

2

1 + 〈a|b〉
. (13)

Using the fact that
∑

a |〈ψ|a〉|2 = 1 and
∑

b |〈ψ|b〉|2 = 1, we can express∑
a,b

|〈ψ|a〉|2 · |〈ψ|b〉|2 · f(a, b) ≥ min
a,b

f(a, b)

≥ 2 ln
2

1 + 〈a|b〉
. (14)

Considering that

min

[
ln 2

1 + 〈a|b〉

]
=

ln 2

1 + max|〈a|b〉|
, (15)

we can put everything together as

B(Â, B̂) = Sα(Â;ψ) + Sα(B̂;ψ) + (1− α)Sα(Â;ψ)Sα(B̂;ψ)

≥ 1

1− α

[
1−

(
2

1 + max|〈a|b〉|

)2(α−1)
]
. (16)

If we take c = maxij |〈ai|bj〉|, where |ai〉 and |bj〉 are the eigenvectors of A and B respectively,
we obtain the bound

B(Â, B̂) ≥ 1

1− α

[
1−

(
2

1 + c

)2(α−1)
]
. (17)

However, by appealing to the Riesz’s theorem [18, 20] in the region of 1/2 ≤ α ≤ 1, a better
hence tighter bound is obtained which can be expressed as

B(Â, B̂) ≥ 1

1− α

[
1−

(
1

c

)2(α−1)
]
. (18)

This result has the same form as shown in Ref [16]. This gives an irreducible lower bound
(generalized uncertainty measure) of the uncertainty on the simultaneous measurement of
observables when we use the Tsallis entropy to express the quantum uncertainty relation. Based
on this connection, now we can directly use this result as an information measure in quantum
key distribution protocols where the two legitimate parties, Alice and Bob generate a secret key
based on the measurements of the states which they receive. Suppose that Alice’s measurements



are represented by X and X ′ and Bob’s measurements are represented by Y and Y ′, therefore
in order to generate a secret key the two parties need to communicate the choice of their
measurements to each other. However, this communication takes place in the presence of an
eavesdropper, Eve. The eavesdropper can perform any kind of attack on the communication
channel and is only limited by the laws of physics. Provided the correlations are stronger between
the measurements of the two legitimate parties, they can still generate a secret key. We therefore
appeal to the result by Devetak and Winter [21] who quantified the amount of extractable key
which can be expressed as, K ≥ H(X|E)−H(X|B). Without loss of generality, we can simply
re-write this lower bound in terms of Tsallis entropy as

K ≥ 1

1− α

[
1−

(
1

c

)2(α−1)
]
− Sα(X|B)− Sα(Y |B). (19)

However, based on the property that measurements cannot decrease entropy we can write

K ≥ 1

1− α

[
1−

(
1

c

)2(α−1)
]
− Sα(X|X ′)− Sα(Y |Y ′). (20)

By assuming symmetry i.e., Sα(X|X ′) = Sα(Y |Y ′), this gives us a simple proof against collective
attacks which was shown in Ref [22] for the BB84 protocol by using the Shannon entropy. The
conditional Tsallis entropy is defined in the Appendix.

3. Conclusion
Based on the above calculations, we have shown that the quantum uncertainty principle can
be expressed in terms of the Tsallis entropy. We remark that this result preserves a similar
form with the result which was obtained by Deutsch [16]. Therefore, we can conclude that the
regardless of the Tsallis entropies being non-additive, we can reach the some limit as was shown
by Deutsch’s derivation which was derived based on the Shannon entropy. We highlight this
result may provide an initial step in finding more interesting applications of the Tsallis entropy
in the area of quantum information for example, as a measure of information in quantum key
distribution protocols where we evaluate for important parameters such as secret key generation
rates. The most important question is, whether the Tsallis entropies can gives us better bounds
when compared to the Shannon and Rènyi entropies will remain a project for future research.
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4. Appendix
In this section we give some useful definitions of the properties of the Tsallis entropy for the
evaluation of Equations (19) and (20). The conditional Tsallis entropy of the conditional
probability distribution for random variables A and B is defined as

Sα(A|Bj) =
1

1− α

[∑
i

(pij(A|B))α − 1

]

=
1

1− α

[∑
i (pij(A,B))α

(pj(B))α
− 1

]
, (21)

which is a generalization of the conditional Shannon entropy and is expressed as

H(A|Bj) = −
∑
i

pij(A|B) ln pij(A|B), (22)

where pj(B) and pij(A,B) are the marginal and joint probabilities respectively.
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