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Abstract. Quantum discord is interpreted as a measure of quantum correlations in a
composite quantum system. It is defined as the difference of two classically identical expressions
for mutual information. In this article we show that the quantum discord can be increased by
local operations. Thus, there are classically correlated quantum states with non-zero quantum
discord which shows that non-vanishing quantum discord is not a sufficient condition for
quantum correlations.

1. Introduction

The characterization of quantum and classical correlations plays an important role in the
foundations of quantum theory and has implications for quantum computing. Quantum
algorithms require non-classical correlations to improve the efficiency compared to their classical
counterpart. Violation of Bell’s inequality is a necessary condition for the correlations to be
quantum. Entangled states are necessarily non-classically correlated since one can not prepare
an entangled state locally. However, a separable state, i.e, not an entangled state, can be
prepared by local operations and classical communication. One might ask the question whether
entanglement and non-classical correlations are synonymous.

Recent studies have shown that there is more in the quantum correlations than just
entanglement [1], namely, quantum discord. In [2] Knill and Laflamme showed that sometimes
a highly mixed state with almost no entanglement can perform a task exponentially faster than
any classical algorithm. A vast literature is available on the advantage of non-zero discord states
in quantum algorithms [3, 4, 5, 6].

In this article we address the problem whether all non-zero discord states contain non-classical
correlations. For that purpose we use the geometric measure of quantum discord and the normal
form of completely positive trace-preserving maps. We show that a class of non-zero discord
states can be prepared from zero discord states by local operations which preserves the trace.
Since local trace-preserving operations cannot increase non-classical correlations1, we argue that
such states do not contain any non-classical correlation even though they have non-zero discord.

The article is organised as follows: we start with the definition of quantum discord in Sec. 2.
In Sec. 3 we introduce the geometric measure of quantum discord. We discuss the criterion for
the discord to be zero in a given state. This criterion is used to show that local operations can

1 Correlations in general cannot be increased by local operations which are trace preserving, i.e, deterministic.



increase the discord in Sec. 4. We conclude the article by a brief discussion on the implications
of the results of Sec. 4.

2. Definition of quantum discord

The Shannon entropy H(X) quantifies the ignorance of a classical random variable X. It is
defined as H(X) = −∑

x px log2 px, where x ∈ X and px is the probability of the event x.
The quantum counterpart of the Shannon entropy is the von-Neumann entropy S(ρ) for a
density matrix ρ defined as S(ρ) = −trρ log2 ρ. The correlation between two random variables
is captured by the mutual information,

I(X : Y ) = H(X) +H(Y )−H(X,Y ), (1)

where H(X,Y ) = −∑

x,y pxy log2 pxy is the joint information in the two random variables X
and Y and pxy is the joint probability of the event x and y. We can replace the joint information
by the conditional entropy H(X|Y ) by using simple rules in probability theory as:

H(X,Y ) = H(Y ) +H(X|Y ), (2)

where H(X|Y ) =
∑

y pyH(X|Y = y) represents the information in the variable X when we

condition on the output of Y . Substituting Eq. (2) into Eq. (1) results in

I(X : Y ) = H(X)−H(X|Y ) =: J (X : Y ). (3)

This shows that the expression in Eq. (1) and in Eq. (3) are identical in classical probability
theory. In the quantum picture the two expressions reads:

I(ρ
AB

) = S(A) + S(B)− S(AB), (4)

J (ρ
AB

) = S(A)− S(A|B), (5)

where S(A) = −tr[ρ
A
log2 ρA

] with ρA = trBρAB.
The conditional entropy S(A|B) is a more involved concept. This is the entropy in

the subsystem A conditioned on the measurement outcomes of B. Consider a projective
measurement in the orthonormal basis {|ψi〉} in B. For the j-th measurement outcome of
B the state of the subsystem A is given by:

ρ
(j)
A =

trB (I⊗ |ψj〉〈ψj |(ρAB)I⊗ |ψj〉〈ψj |)
tr (I⊗ |ψj〉〈ψj |(ρAB)I⊗ |ψj〉〈ψj |)

. (6)

The probability of such an event reads

pj = tr (I⊗ |ψj〉〈ψj |ρABI⊗ |ψj〉〈ψj |) . (7)

Then the conditional entropy can be written as:

S(A|B) =
∑

j

pjS(ρ
(j)
A ). (8)

It is apparent that the conditional entropy S(A|B) depends on the measurement we perform on
the subsystem B. Therefore, it is different for different measurement basis in B. In [1] Ollivier
and Zurek have shown that the two classically identical expressions for mutual information
can be very different in the quantum picture and the difference between them captures the
quantumness of the correlations.



Quantum discord (with respect to A) is defined as the difference between I and J maximized
over all the measurements {Πi} over subsystem B. It can be expressed by:

DA(ρAB
) = max

{Πi}
(S(B)− S(AB)− S(A|B)), (9)

Interestingly, for pure states entanglement is equivalent to quantum discord. But in the case of
mixed states, there are some states which are separable with non-vanishing quantum discord.
For example, all the separable Werner states |w〉 of the form:

|w〉 = 1− p

4
I+ p|φ+〉〈φ+|,

where |φ+〉 = (|00〉+ |11〉)/
√
2 and p ≤ 1/3, have non-zero quantum discord.

Another interesting point to note is that in general the left quantum discord DA and the right
discord DB are not equal. The states ρ for which both, the left discord and the right discord,
are zero, is often referred to as completely classically correlated states [7].

3. Geometric measure of quantum discord

Like the separable states, the states with vanishing discord are of great importance. It was
shown in [8] that a state σ has zero discord (with respect to B) if, and only if, there exists a
projective measurement {Πj = |ψj〉〈ψj |} such that

∑

j

(I⊗Πj)σ(I⊗Πj) = σ. (10)

Alternatively, all the states of the form σ =
∑

j pkσ
(j)
A

⊗Πj have zero discord with respect to B.

Eq. (10) serves as a criterion to check whether a given state is of zero discord state or not.
Next, we can ask what is the amount of discord a given state possesses. To answer that we
consider the geometric measure of discord given in [7] for two-qubit systems. For the geometric
measure of discord we calculate the distance between a given density matrix ρ and the nearest
zero-discord state σ. To calculate the geometric measure of discord, let us have a look at the
Bloch representation of a two-qubit density matrix ρ. In the Bloch representation it can be
written as:

ρ =
1

4



I+ r.σ ⊗ I+ I⊗ s.σ +
3

∑

k,l=1

tklσk ⊗ σl



 , (11)

where r = (r1, r2, r3) ∈ R
3, s = (s1, s2, s3) ∈ R

3 and tk,l are real numbers. We can represent the
density matrix by another 4× 4 matrix Mρ given by:

Mρ =
1

4

(

1 s
T

r t

)

. (12)

Here s
T is the transpose of vector s.

In this new notation the left discord DA and the right discord DB can be written as [7]:

DA = tr(rrT + ttT )− lmax, (13)

DB = tr(ssT + tT t)− emax, (14)

where lmax is the largest eigenvalue of the matrix rr
T + ttT and emax is the largest eigenvalue

of the matrix ss
T + tT t.

It is easy to see from Eq. (13) and Eq. (14) that if the matrix L = rr
T + ttT and the matrix

R = ss
T + tT t are rank one matrices, then that state ρ is completely classically correlated.



4. Does non-zero discord imply quantum correlations?

In this section we are addressing the question whether if we have a state ρ with non-zero
discord, does that mean the state has true quantum correlations? Quantum correlation are
those correlations which are not classical correlations (i.e, captured by mutual information).
Moreover, like any correlations they can not be increased by local trace preserving operations.
Therefore, if a state ρ with non-zero discord can be prepared by applying local trace preserving
operations from a zero-discord quantum state ρ̃, then the correlations in the state ρ are not
quantum. Before we discuss the cases where we can derive a non-zero discord state from a zero
discord state we need to introduce the normal form of completely positive maps.

4.1. Qubit maps: normal form

Consider a completely positive single-qubit map Λ : H2 → H2. Choosing normalized Pauli
matrices as operator basis (with σ0 = I) we can represent Λ as a 4× 4 matrix M as [9]:

Mµν = tr[σµΛ(σν)]/2, (15)

where µ, ν = {0, 1, 2, 3}. If Λ is a hermiticity preserving map then the matrix M is real and if
Λ is trace preserving then M1ν = [1, 0, 0, 0]. Therefore, the most general trace preserving single
qubit map can be written as:

M =

(

1 0
x λ

)

, (16)

where x = (x1, x2, x3) and λ is a 3× 3 real matrix.
The action of a single-qubit channel on one side of two-partite system with a two-qubit density

operator ρAB reads:

Λ⊗ I(ρAB) =MΛMρAB
(17)

=

(

1 0
x λ

)

1

4

(

1 s
T

r t

)

(18)

=
1

4

(

1 s
T

x+ λr xs
T + λt

)

(19)

and

I⊗ Λ(ρAB) =MρAB
MT

Λ (20)

=
1

4

(

1 s
T

r t

)(

1 x
T

0 λT

)

(21)

=
1

4

(

1 x
T + s

TλT

r rx
T + tλT

)

. (22)

With this knowledge of maps and their action of the two-qubit density matrices we now move
on to our main result.

4.2. Local operations can increase the discord

In this subsection we will study a class of states with zero discord. We will show that the discord
in such states can be increased by almost any arbitrary local completely positive map. Consider
the density matrix of the form (in Bloch representation):

Mρ ∈
{

1

4

(

1 0
r αrrt

)}

, (23)



where r ∈ R
3 and α ≤ 1 is an arbitrary real number. The property of such states is that all of

these states are zero discord state. The action of the map Λ on the first qubit results in:

Λ⊗ I(Mρ) =

(

1 0
x λ

)

1

4

(

1 0

r αrrT

)

(24)

=
1

4

(

1 0

x+ λr αλrrT

)

. (25)

It is clear from Eq. (25) that the matrix L = (x + λr)(x + λr)T + α2λrrTrrTλ is not a rank
one matrix and hence has non-zero discord. The application of the same map Λ on the second
qubit results in:

I⊗ Λ(Mρ) =
1

4

(

1 0

r αrrT

)(

1 x
T

0 λT

)

(26)

=
1

4

(

1 x
T

r rx
T + αrrTλT

)

. (27)

Here the left discord is still zero but the right discord has become non-zero. Thus we have
proved that not all the non-zero discord states have quantum correlations.

5. Discussion

Quantum discord was supposed to capture the non-quantum nature of the correlations. But it
can be altered by local operations, therefore, calling quantum discord a signature of quantum
correlations is unjustified. However, there is no doubt that the non-zero discord for a quantum
state is purely a manifestation of the quantum nature of the system. The question remains what
is the amount of quantum correlation in a general quantum state with non-zero discord.
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