
Image optimisation techniques in a PET diamond

location system

Martin Cook, Sergio Ballestrero, Simon Connell and Marius
Tchonang

University of Johannesburg

E-mail: cookish@gmail.com

Abstract. The Mineral PET project aims to locate diamonds within Kimberlite by first
irradiating the rock to induce beta decay in carbon atoms, then imaging the resultant positron
emission signals. The presence of homogeneously distributed carbon forces us to go beyond
simple counting techniques and rather create a 3D image of hotspots. The resolution of the
image obtained is critically important for the location of small diamonds (of the order of 1mm).
If the resolution is improved, less activation and/or fewer detectors are required to differentiate
the diamond signal from the background.

While in theory the position and orientation of the detectors is known, each detector will
differ slightly from the ideal values due to small misalignments, calibration differences etc. We
therefore present attempts to improve position readouts inspired by techniques developed at
CERN, specifically in the ATLAS detector of the LHC. Detector alignment at ATLAS uses a
track-based algorithm that minimise a χ2 value based on track-hit residuals. While the Mineral
PET context is simplified by a vastly reduced number of detectors elements, it is complicated
by the fact that we are not interested in the path of the gamma rays that are actually detected,
but rather the path of the diamond through the detectors, which can only be reconstructed
from the combination of several detected events.

1. Introduction
The Mineral project images diamonds within coarsely crushed Kimberlite (±10cm rocks),
without needing to bring diamonds to the surface. The technique uses Positron Emission
Tomography (PET). The Kimberlite is irradiated, exciting the giant dipole resonance, to produce
the unstable 11C isotope. This beta decays, and the positron emission and annihilation leads to
back-to-back 511 keV photons. These are detected in coincidence by planes of position sensitive
detectors on either side of the passing rock. The image is then created by constructing a 3D voxel
space with tubes drawn between pairs of detector events. The width is given by the position
resolution of the detectors. This leads to a three dimensional density map of PET isotopes, with
high activity indicated by the intersection of many tubes.

Only coincident events are recorded, and the utilisation of detectors and electronics with a
very good time resolution ensures that the rate of random coincident events is low. There is still
a true coincident background due to non-diamond positron annihilation events though. This
is partly due to homogeneously distributed carbon throughout the Kimberlite; carbon makes
0.04% to 0.06% of Kimberlite by mass, depending on the type of Kimberlite. Secondly, oxygen
will inevitably also be activated in the irradiation process, and it typically constitutes around



50% of Kimberlite. Luckily, 15O has a half-life of 2 minutes compared to 20 minutes for 11C.
The relative activity has been determined from experimental data taken at the Aarhus

university synchrotron. The size of the 511 keV peak was found for data bins split according to
successive time intervals. This was then fitted with a sum of exponential decays corresponding
to each of the PET elements that are present, allowing us to find the relative concentrations
of PET elements. Extrapolating back to the time of irradiation shows that the initial oxygen
signal is 29 times higher than that of carbon. After 20 minutes therefore, diamond will have
a PET activity between 2400 and 1600 times higher than that of the surrounding carbon and
oxygen.

To be interesting in a real world context, the mineral PET technique would need to find a
diamond as small as 1mm3. Given a 1mm diamond within a typical 10cm Kimberlite block, the
non-diamond PET signal still outweighs that within the diamond by about 500 times. It is for
this reason that we need to create a density image to look for hotspots, rather than rely on simple
counting techniques. Given the current detector resolution of 5mm, and adding in the increase
in resolution due to the interpolative effect of considering many different tubes, a well-aligned
and calibrated system will easily differentiate a 1mm diamond from the background. Detector
misalignments or inaccurate position calculation will however act to spread the diamond signal
out into the noise. The higher the signal to noise ratio, the fewer events are required to identify
the presence of a diamond. Good detector optimisation thus reduces the required irradiation
beam current and/or the number of detectors, making it important factor when analysing the
feasibility of the system.

2. Alignment algorithms at ATLAS
The inspiration for our detector optimisation approach arises from the alignment procedure used
in the ATLAS Transition Radiation Tracker (TRT). The approach used is an extension of the
track fitting formalism [1]. One defines a global χ2 as follows:

χ2 =
∑
i

(
mi − hi(x)

σi

)2

(1)

where mi is the set of all measured coordinates, x is a vector that parameterises all tracks under
consideration and σi is the measurement error. hi is the measurement model;

(
mi − hi(x)

)
is thus the difference for the ith coordinate between what was measured, and what the result
should have been given parameters x. Finding the best track parameters means minimising χ2,
typically by using a Newton-Raphson method to find where the first derivative is zero.

In the real world, the accuracy of measurements depends not only on the track parameters,
but also on the alignment of the detectors that perform the measurement. x in (1) is thus
replaced by a vector composed of both the track parameters x and calibration parameters
α. This vector describes the position, rotation, etc. of each detector involved. One therefore
simultaneously aligns the detectors and fits the particle tracks.

The problem described above can be expressed in matrix formalism as

χ2 =
∑
tracks

rTV −1r (2)

where r is the residual vector of differences between measured coordinates and our measurement
model, r(x, α,m) = h(x) − m. The 1/σ2i factor in (1) has been expressed more generally by
the inverse of the covariance matrix, V −1. In the context of ATLAS, there are a huge number
of alignment and track parameters, and complex operations (particularly matrix inversion) are
not computationally tractable with this number of dimensions. Work has therefore gone into



methods to minimise χ2 without needing to perform the full matrix inversion; for instance
splitting the problem into non-correlated components (see, for example, [2] and [3]).

There is an important difference between the typical detector alignment problem discussed
above, and the Mineral PET alignment problem. The position of a positron source in Mineral
PET is inferred from the intersection of randomly orientated tubes, rather than directly
measured. A measurement model that tells us where hits will be detected cannot be defined,
which means it is not possible to directly calculate a χ2 based on residuals, as in (2). New
measures of alignment accuracy must be therefore introduced, as discussed below.

3. Minimisation approach
3.1. Local parameters
“Local” parameters refer to variables that influence one detector at a time without requiring
consideration of the correlations between detectors. The position readout from the resistive
anode on the photomultiplier tubes is calculated in two dimensions by comparing the ratio
of signals from opposite sides. This is not perfectly accurate. We thus introduce a series of
corrections, which include: linearly expanding raw voltages, quadratically expanding x and y
coordinates, adjusting the angle in polar coordinates, quadratically expanding the radius and
linear scaling of x vs. y.

The scintillator crystals in the detectors are segmented into 5mm blocks, so we know exactly
where the pixel should be. Minimisation of the local parameters can proceed for one detector
at a time by comparing measured to actual pixel locations, without needing to worry about
coincident hits. If the fitted position of the (i, j)th peak is xij with error σij , and the actual
position for the (i, j) pixel is uij , then a χ2 score defined by

χ2
local =

∑
i,j

|xij − uij |2

σij2
(3)

can be minimised for each detector. In practice, the pixels are similar, so to decrease
computational load we set σij = 1. Minimisation requires the following at every step: redraw
the two dimensional position histogram with current parameters, find the peaks for each pixel
and calculate the score from (3). Section 4.1 shows sample results.

3.2. Global parameters
The position and rotation of detectors cannot be optimised by considering only one detector
at a time, as moving one detector changes the orientation of all tubes connecting it to other
detectors. A strategy is therefore needed that is able to evaluate the performance of the system
globally. To this end, data is taken with a point source. The alignment quality is determined
by analysing the sharpness of the peak corresponding to the point source in voxel space. The
initial approach was to fit the peak with a three dimensional Gaussian, of the form

f(x, y, z) = Ae
−
(

(x−x0)
2

2σx2
+

(y−y0)
2

2σy2
+

(z−z0)
2

2σz2

)
(4)

Peak width is given by σxσyσz. This approach was found to not be practical because the peak
shape often did not closely resemble a gaussian. Also, the sharpness of the peak can artificially
improved, for example if detector positions are changed such that tubes are moved out of the
fit window. This improves σxσyσz despite decreasing alignment quality. Finally, requiring a full
best fit computation for every score calculation is prohibitively slow computationally.

We therefore introduce a new method to quantify peak sharpness, S, defined as:

S =
∑

(i,j,k)∈W

V (i, j, k)2 (5)



where V (i, j, k) is a three-dimensional histogram that stores the sum of the tubes passing through
the voxel labelled by coordinates i, j and k. The summation extends over a window W around
the point source coordinates. By taking the square of the voxel counts, the score is increased
both by sharpening the peak corresponding to the point source, as well as ensuring that as many
tubes as possible pass through the fitting window W . In a sense the score can be thought of as
a χ2 fit for a flat background, and a good, sharp peak is one that fits this flat background as
badly as possible. Minimisation proceeds by evaluating the inverse, S−1.

Some non-sensical solutions will give rise to minima, such as all detectors placed exactly on
top of each other. The more extreme examples of this type be avoided by sensible parameter
constraints. In general however, it is important to consider more than one position of the point
source at a time. The first step in this direction is to send the point source on a constant velocity
track through the detectors. The positions of all detector hits are extrapolated backwards based
on their timestamp, allowing the creation of a static voxel space as before. One individual track
is still limited in its positional coverage however. The next step is thus to simultaneously consider
several tracks passing through the voxel space. The collective score Stot is defined as the sum of
the individual track scores. Data is then taken by sending a point source through the detectors
several times along different tracks. Because the tracks take place at different times, once the
backwards extrapolation for velocity has been done, each track will create a point source peak
at a different position in voxel space. A measurement window W can therefore be defined for
each track, allowing simultaneous minimisation without interference.

One problem with the algorithm as outlined so far is that it is highly dependent on the
accuracy of the tracks passing through the detectors. Taking a leaf from the ATLAS algorithm
described in section 2, we therefore combine the track fitting and alignment algorithms. This is
done by adding 6 additional parameters to the minimisation problem for each track in the data
set. These parameters describe the initial position and velocity of the track. That starting time
of the track is treated as a known; any inaccuracies in this can be accommodated by tweaking
the initial position.

With two angles and three position coordinates for each detector, together with the track
parameters, minimisation must therefore proceed in a 80 + 6(Ntracks) dimensional space. This
is further compounded by the fact that function is stochastic, and therefore not necessarily
smooth, making the numeric determination of quantities such as derivatives unreliable. Finding
a global minimum in such an environment is a daunting task for a numerical algorithm. We do
not necessarily have to find the single, unique, global minimum to have success however. Any
point that is found with a lower score than the starting point represents an improvement in
alignment, even if it is not optimal.

We can improve the chances of success by aligning the parameters more closely with the
physical situation. Consider the likely scenario of a mispositioned detector bank. To discover
this, the minimisation algorithm would need to try a step where it simultaneously moved all
detectors in the bank in one direction. To make this easier, we introduce additional parameters
that capture the collective position and rotation of each detector bank. The minimisation then
occurs hierarchically. First, track velocity and position parameters are minimised. This should
be reasonably accurate given broadly correct starting values for detector positions. Next, the
collective detector bank parameters are optimised. The individual detectors are optimised last.

4. Results
4.1. Single detector minimisation example
As proof of principle, the minimisation algorithms from the Minuit package [4] were applied to
a single detector data set. Minuit is not the ideal package, as it is designed to find local minima.
With some hand holding though, significant improvements were achieved. The Simplex method
within Minuit was more effective in general, as it does not require well behaved derivatives



as opposed to the default Migrad algorithm. Figure 1 shows a two dimensional histogram of
positions recorded by a single detector. The minimisation was able to improve χ2

local from 2.33
to 0.95. Visually, the “stretching” effect in the middle has been markedly reduced, with a more
even pixel distribution. The Spectrum2 package was used for two dimensional peak finding [5].
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Figure 1. Single detector position graph before and after parameter optimisation. Warmer
colours indicate higher counts. The grey grid lines show pixel boundaries.

4.2. Coincident minimisation
The full minimisation procedure has not yet been completed. Some preliminary results are
shown below. A full image was taken with all 16 detectors. Our best measured parameters give
the score from (5) to be S = 17259. The recorded position of one detector was then purposefully
moved 2cm along the +x axis. The resulting PET image is show in figure 2, with S = 13938.
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Figure 2. Left: 3D PET image showing voxel space after one detector was misaligned by 2cm.
A threshold of 2 was used to reduce noise. Right: x− y plane of the fitting window from (5).

The minimisation algorithm was then run to optimise the parameters of the moved detector.
Figure 3 shows the resulting image, which has an improved score of 17743. One can see that the
tubes are now properly intersecting at a point, creating a better resolved point source image. The
minimisation procedure found the following changes: x→ x− 2.05, y → y− 0.48, z → z + 0.57.
It also rotated the detector by 0.3 degrees. The fact that the score even exceeds the initial 17259
shows that the algorithm found values that were even better than the original “correct” ones.
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Figure 3. PET image after optimisation.

5. Conclusions and discussion
The hierarchical approach to parameter optimisation has produced some promising preliminary
results. The major difficulty encountered so far is the behaviour of the minimisation algorithms.
Gradient based algorithms fail badly, because the stochastic, uneven nature of the parameter
space means that derivates cannot reliable be calculated. Simplex based methods have produced
more success, but need some hand-holding to ensure that the step size is small enough to jump
over local minima and approach the true minimum. Future research will investigate specialised
global (as opposed to local) minimisation algorithms, for example the method proposed in [6]
that successively subdivides simplexes that cover the searchable region.

The second major obstacle is the large number of dimensions, which makes it intractable
to minimise all parameters simultaneously. The hierarchical approach mitigates this to some
extent by starting with global parameters that describe collective detector misalignments first.

The last obstacle is computational ability. Each function evaluation requires several seconds
to compute, as a 3D histogram must be populated and analysed at every point. This is not a
problem if only a handful of parameters are minimised at a time, but many function evaluations
are needed for a minimisation algorithm to hope to properly search a higher dimensional space.
This might require parallelisation of the code to run on a cluster.

In conclusion, it seems that reliably finding the unique global minimum that optimally
aligns all detectors is a daunting task. Despite this, the method has already provided good
improvements on our initial parameters, and promises to be a valuable technique to improve
calibration even if the optimal global minimum is not found. We would like to extend our
investigation to the optimisation of PET in other contexts, such as medical PET and positron
emission particle tracking, using a moving point source based calibration cycle approach.
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