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Abstract. Ever since the discovery, by Allen et al. that beams which carry a quantized orbital
angular momentum could be easily realized in the laboratory, there have been many classical
and quantum optical experiments that utilize this new optical degree of freedom. It is therefore
necessary to familiarize oneself with the representation of the quantum and classical states of
light in order to explain the results of these experiments. Classical paraxial light is described by
a superposition of analytical solutions to the paraxial wave equation. However, due to the well-
known analogy between quantum mechanics and paraxial optics we can apply operator algebra
to the classical states of a light beam. A short review of the applications of this formalism is
given. For the quantum-mechanical description of light, we quantize the paraxial light beams
and this leads to a description of the photon in terms of creation operators acting on the vacuum
state. The analogy between the quantum and classical states of light is analyzed.

1. Introduction
The laws which govern the behaviour of electromagnetic radiation, and more specifically light,
were first compiled into a self-consistent theory by James Maxwell in 1864 and since then the
four fundamental equations of electromagnetism have been known as Maxwell’s equations. It is
well-known from Maxwell’s theory that light carries both energy and an associated momentum,
which consists of linear and angular contributions. In 1909, Poynting proved that circularly
polarized light carries spin angular momentum, which is related to the polarization of the light
beam. This was experimentally verified by Beth, 20 years later, using a quarter-wave plate
suspended from a fine quartz fibre. Although the concept of a light beam possessing orbital
angular momentum is not new, it was only in 1992 that Allen et al. [1] realized that it was
possible to easily produce a light beam possessing a well-defined orbital angular momentum in
the laboratory. In their seminal work they showed that within the paraxial approximation, any
monochromatic beam with an azimuthal phase dependence of exp(ilφ) will possess an orbital
angular momentum of l~ per photon. Since then there have been many experiments which utilize
this new degree optical degree of freedom in novel experiments of quantum and classical optics.

It is therefore necessary to be able to represent the quantum and classical states of light in
order to describe the results of experiments. This article reviews the use of operator algebra or
Dirac notation for paraxial light beams. This technique is advantageous because it allows one
to calculate quantities associated with the field in a very simple way as well as to analyze the
behaviour of light beams during propagation without going into detailed calculations. We then
quantize the field of a paraxial light beam in order to obtain a description of a single-photon



state in terms of creation operators acting on the vacuum state. Finally, we explain the analogy
between the representation of the classical and quantum states of light.

2. Operator algebra for laser modes
Maxwell’s equations can be combined to give scalar wave equations for each component of the
electric, E and magnetic, B fields of a light beam of the form,(

∇2Ψ− 1

c2
∂2

∂t2

)
= 0. (1)

Our aim is to describe a laser beam which is a collimated, monochromatic light beam whose
transverse beam profile, u(x, y, z), varies slowly with longitudinal propagation in the z direction.
In this case we use the separation of variables Ψ(x, y, z, t) = u(x, y, z) exp[i(kz−ωt)] and invoke

the paraxial approximation (where neglect ∂2

∂z2
in favour of k ∂

∂z ) which leads to the paraxial
wave equation
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)
u(x, y, z). (2)

We notice two properties of this equation that gave Stoler [2] a strong motivation to apply the
operator formalism (which is used quantum-mechanically to describe the time-evolution of the
quantum-mechanical states) to describe the longitudinal propagation of classical light beams.
Firstly, the form of the paraxial wave equation (Eq. (2)) is analogous to the two-dimensional
time-independent Shrödinger equation for a free particle with the z co-ordinate replacing the
time variable, t and the wavelength replacing Planck’s constant. Secondly, Eq. (2) has the
explicit solution

u(x, y, z) = exp

[
i(z − z0)

2k

(
∂2

∂x2
+

∂2

∂y2

)]
u(x, y, z0), (3)

which tells us that if we know the transverse profile of the beam at a point z0 we can use the
exponential factor to find the transverse profile of the beam at a later position z. This means
that this exponential factor is analogous to the time-evolution operator that describes the time
displacement of the wave function of a particle from time t0 to t. We can therefore transform
Eq. (3) into an operator relation in Dirac notation as follows.

In this notation we can represent the transverse beam profile u(x, y, z) as a state vector |u(z)〉.
Such a state vector lies in the Hilbert space L2(C2) and is normalized, obeying the identity

〈u(z)|u(z)〉 ≡
∫
dru∗(r, z)u(r, z) = 1 (4)

where r = (x, y)T is the position in the transverse plane. As well as showing the normalization
of the state vectors this equation shows how the inner product is defined on this space. When
u is normalized for one position z it is automatically normalized for all other z values [5]. The
basis vectors in this space are |r〉, which are eigenvectors of the transverse position operator
r̂ = (x̂, ŷ) that acts on state vectors in this space. If we take the inner product of the state
vector |u(z)〉 with a basis vector we recover the beam profile,

u(x, y, z) = 〈r|u(z)〉. (5)

The differential operators −i ∂∂x and −i ∂∂y which act in the function space containing u(x, y, z)

as shown in Eq. (3) are represented by the momentum operators p̂x and p̂y, respectively, in
this Hilbert space. The commutation relations between the position and momentum operators



are defined as in quantum mechanics. With these preliminaries, we may now express Eq. (3) in
Dirac notation as

|u(z)〉 = Û|u(z0)〉, (6)

where the operator Û, which governs the propagation of the state from position z0 to z, is given
by,

U = exp

[
− i(z − z0)

2k
p̂2

]
(7)

with p̂2 = p̂2
x + p̂2

y. Please note that even though we are using the operator algebra, which is
usually used in quantum mechanics, we are still in the purely classical regime.

The expectation value of an operator, Ô is defined in the standard way as

〈O〉 = 〈u(z)|Ô|u(z)〉 =

∫
dru∗(r, z)Ôu(r, z). (8)

In this equation the states are z-dependent and the operators “stationary”, which is the
Schrödinger picture. We now move to the Heisenberg picture where the operators become
z-dependent, so that the evolution of the expectation value of an operator can be expressed as,

〈O〉 = 〈u(z0)|ÛÔÛ|u(z0)〉. (9)

A complete an orthogonal set of solutions to the paraxial wave equation (Eq. (2)) is given by
the Laguerre-Gaussian (LG) modes, upl. This means that the set of LG modes forms a basis for
paraxial light beams, so any laser beam can be expanded as a superposition of LG modes. It is
well known that the analytic form of these modes resemble the wave functions of the stationary
states of a two-dimensional quantum-mechanical harmonic oscillator. Therefore Nienhuis and
Allen [5] were able to use operator algebra to obtain ladder operators of the harmonic oscillator
which allow one to generate higher-order LG modes from the fundamental Gaussian mode.

Let us consider an example given in [3] that shows how this operator formalism simplifies the
calculations of quantities associated with the electric field. The full scalar version electric field
which includes time dependence on it can be written as

〈r|E〉 = E0 exp[i(kz − wt)]〈r | u〉 (10)

where E0 is the amplitude of the field and u ≡ u(z) for convenience. If u(ρ, φ, z) = u0(ρ, z)e
ilφ,

which is a Laguerre-Gaussian mode in cylindrical coordinates, then the expectation value of the
angular momentum operator is

〈Lz〉 =

〈
E

∣∣∣∣i~ ∂

∂φ

∣∣∣∣E〉 = |E0|2~l〈u|u〉. (11)

The linear momentum of the state in the direction of propagation, z is given by

〈pz〉 =

〈
E

∣∣∣∣i~ ∂∂z
∣∣∣∣E〉 = |E0|2~k〈u|u〉, (12)

while the energy of the state is

〈W 〉 =

∫ ∫
dxdyE∗(r, t)

(
i~
∂

∂t

)
E(r, t) = |E0|2~w〈u|u〉. (13)

Therefore the ratio of the orbital angular momentum carried by the wave to the energy that it
carries is

〈Lz〉
〈W 〉

=
l

ω
(14)



while the ratio of orbital angular momentum to linear momentum is

〈Lz〉
〈pz〉

=
l

k
. (15)

These relations are valid classically as well as quantum mechanically, since ~ does not appear
in it. Every photon has an energy of ~ω and a linear momentum of ~k therefore for the ratios
to be valid on a single-photon level, each photon must possess a well-defined an orbital angular
momentum of l~. Thus we have, in a simple way, arrived at the conclusion reached by Allen
et al. [1], that every photon in a Laguerre-Gaussian beam carries a quantized orbital angular
momentum of l~ per photon. Also note that due to Eq. (9) the quantities in Eq.s (11), (12)
and (13) are all conserved during free space propagation since the operators in these equations

commute with p̂2 of the propagation operator Û [4].
This operator formalism that we have developed is not limited to free-space propagation.

Indeed many authors [2, 4, 5] have applied it to the propagation of beams through thin lenses.

We can implement the effect of this lens with a focal length f by means of an operator T̂lens

that is is a function of the transverse coordinate operators x̂ and ŷ [2]

T̂lens = exp

[
− ik

2f
(x̂2 + ŷ2)

]
. (16)

Let us consider a system which consists of two identical cylindrical lenses orientated along the
x-axis with focal length f and separated from each other by a distance 2d with free propagation
between the lenses. The propagation operator for this system is given by

Ûcyl = T̂lensÛT̂lens = exp

[
−ikx̂2

2f

]
exp

[
−dp̂2

k

]
exp

[
−ikx̂2

2f

]
(17)

Using this propagation operator van Enk and Nienhuis [4] were able to prove, in a simple way,
that if d = f/

√
2 then this setup converts a Laguerre-Gaussian mode which contains orbital

angular momentum, into a beam that contains no orbital angular momentum. This setup is
known as an Astigmatic Mode Converter, and in [6], Allen et al. were able to arrive at this
conclusion in a more complex way.

3. Quantum mechanical representation of classical light
The electric E and magnetic B fields can be written in terms of vector potentials and it is often
easier to solve Maxwell’s equations corresponding to these potentials rather than those given for
the E and B fields. The first step for quantization of the electromagnetic field is to express this
vector potential in terms of a basis. In the Coulomb gauge, the vector potential is usually written
in the well-known continuous plane wave expansion. The second step is to convert the complex

amplitudes that appear in the plane wave expansion into creation (â†s(k)) and annihilation

(âs(k)) operators which obey the commutation relation [as(k), a′†s (k′)] = δss′δ
(3)(k − k′). The

vector potential becomes a quantum mechanical operator given by

Â(r, t) =
∑
s

∫
d3k

(
~

16π3ε0c|k|

) 1
2

[εs(k)âs(k)ei(k·r−c|k|t) + h.c]. (18)

where h.c. refers to the hermitian conjugate of the first term.
This is a very general quantization of an electromagnetic field. We want to find a

representation of field for laser beam and a novel method in which to obtain this is provided
by Calvo et al. [7]. They introduce a dispersion relation which allows them to write the wave



vector as k = qq + k0(1 − θ2)uz where q is the transverse wave vector and θ = q√
2k20

is the

parameter that governs the degree of paraxiality. By substituting this into the equation Eq.
(18) and invoking the paraxial approximation (i.e. θ � 1) they find,

AP (r, t) =
∑
s

∫ ∞
0

dk0

(
~

16π3ε0ck0

) 1
2
∫
d2q[εsâs(q, k0)e

ik0(z−ct)ei(q·r⊥−k0θ
2z) + h.c.] (19)

where they have retained only θ2 which appears in the second phase factor is retained because it
is the only relevant paraxial contribution. The transverse basis of Laguerre-Gaussian modes are
a well known orthogonal and complete basis set for paraxial light beams so the vector potential
can now be expressed in this basis. By noticing that the structure of the q-integrand in (19)
resembles the paraxial angular spectrum, the second phase factor can be written as,

ei[q·r⊥−k0θ
2z] =

∑
l,p

LG∗l,p(q)LGl,p(r⊥, z; k0) (20)

where LGl,p(r⊥, z; k0) are the Laguerre-Gaussian modes and LGl,p(q) are the Fourier
transformed profiles at z = 0. The proof of this relation and the expressions for these modes
can be found in the Appendix of [7]. Thus Eq. (19) can be written as

AP (r, t) =
∑
s,l,p

∫ ∞
0

dk0

(
~

16π3ε0ck0

) 1
2

[εsâs,l,p(k0)e
ik0(z−ct)LGl,p(r⊥, z; k0) + h.c.] (21)

where they introduce the Laguerre-Gaussian mode annihilation operators,

âs,l,p(k0) =

∫
d2qLG∗l,p(q)âs(q, k0), (22)

which satisfy the commutation relation

[âs,l,p(k0), â
†
s′,l′,p′(k

′
0)] = δss′δll′δpp′δ(k − k′0). (23)

The most general paraxial single-photon state in the Laguerre-Gaussian basis is then given
by

|ψ〉 =
∑
s,l,p

∫ ∞
0

dk0Cs,l,p(k0)â
†
s,l,p(k0)|0〉 (24)

where |0〉 represents the vacuum state and the complex coefficients Cs,l,p satisfy the normalization

condition
∑

s,l,p

∫∞
0 dk0 |Cs,l,p|2 = 1. This is a Fock state where the complex coefficients represent

the probability of finding the photon in the state |s, l, p, k0〉 with polarization s, wave vector k0
along the z-axis corresponding to an LG mode with azimuthal mode index, l and radial mode
index, p. The Fock state of a photon in a linearly polarized, monochromatic beam in the LG
basis is given by

|ψlp〉 =
∑
l,p

fl,pâ
†
s,l,p(k0)|0〉, (25)

where the complex coefficients fl,p once again satisfy the normalization condition
∑

l,p |fl,p|
2 = 1

and represent the probability of finding the photon in the state |l, p〉. For experiments that utilize
the orbital angular momentum of light beams and photons it is common to experimentally realize
linearly polarized, monochromatic LG beams (with specific l and p values) in the laboratory so
we should be able to represent the state of a photon in this mode. Such a state will contain a
quantized orbital angular momentum of l~ and can be written as

|lp〉 = âs,l,p(k0)|0〉 =

∫
d2qLGpl(q)â†s(q, k0)|0〉. (26)

where we have used Eq. (22).



4. Discussion
We have shown how to use operator algebra in order to represent paraxial light beams and
to analyze the propagation of these beams through free-space and thin lenses. The algebra
simplified this kind analysis and the calculations of quantities associated with the light beam.
We then presented the quantization of a paraxial light beam and the representation of a single-
mode Fock state in the LG basis.

Although operator algebra is a technique used in quantum mechanics it is not specific to
it; it is just an algebra for dealing with vectors. Since functions can be represented as vectors
which form a Hilbert space it is perfectly acceptable to apply this algebra to the beam profiles
of the electric field, as we have done. We must therefore note that by using this algebra we have
not transitioned to the quantum level; we are still in the classical regime. Our state vectors
represent the transverse beam profile of the electric field which can be measured; they do not
represent the wave function of a photon in that mode of the electric field. There does however,
exist an analogy between these two notations.

Consider the state in Eq. (25) which is a single-mode Fock state in the LG basis. This states
represents the creation of a photon or a single excitation with a probability amplitude fl,p in
one LG mode upl with a specific index p and l and a vacuum in all other modes (i.e. modes with
different p and l values). This state can be written as |ψlp〉 =

∫
〈r|ψlp〉|r〉d2r, then ψ(r) is which

is the transverse wave function in position representation or the transverse spatial distribution
of the single photon field [8]. We can now adopt the operator algebra where we denote the
wave-function as the ket |ψlp(r, z)〉 and use the operators we have discussed in Section 2 to
propagate this wave-function in free-space and through thin lenses. We therefore notice that
optical elements such as the mode converters that we have mentioned, also function analogously
on a single single photon level.

Although there is an analogy between the two representations, the difference becomes clear
during measurement. Note that a general paraxial light beam with state vector |u(z)〉 is a
superposition of the LG mode functions, |upl(z)〉, since the LG modes form a basis for such
beams (i.e. |u(z)〉 =

∑
p,l αp,l|upl(z)〉). If |〈r|u(z)〉|2 = |u(x, y, z)|2 we obtain the intensity of the

electric field, which is the sum of the intensities of each of the LG modes in the superposition.
This is a measurable quantity. The wave-function on the other hand gives only the probabilities
of finding a photon in a particular state. For example, if we perform the measurement of the
state in Eq. (25) in the LG basis, the probability of finding a photon in the state |lp〉 is given
by |fl,p|2. Thus we note that it is the measurement of a state that distinguishes its quantum or
classical nature.
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