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Abstract. A circular electric current, perpendicularly bisected by a field plane, was modelled 
as a continuum of pairs of distinct Cartesian component elemental magnetic vector charges 
normal and parallel to the field plane. The Cartesian component elemental magnetic vector 
charges normal to the field plane pair up into Cartesian elemental magnetic dipoles with intra-
dipolar displacements parallel to the field plane. These dipoles generate the overall magnetic 
vector potential. The Cartesian elemental magnetic vector charges parallel to the field plane 
form Cartesian elemental magnetic dipoles (with intra-dipolar displacements perpendicular to 
the field plane) which individually and collectively contribute nothing to the magnetic vector 
potential. Each continuum of these two sets of Cartesian elemental magnetic dipoles 
independently yields the traditionally renowned “magnetic dipolar moment of a circular 
current”. However, together their distinct magnetic fields and their distinct magnetic torques 
respectively constitute the circular current’s overall magnetic field and magnetic torque. These 
results reconcile only if the magnetic dipolar moments of both sets are endorsed, that is a 
circular current of any spatial size is a continuum of pairs of distinct Cartesian elemental 
magnetic dipoles. In addition the customary ad hoc definition of magnetic dipole moment is 
deceptively erroneous, thus prompting a review of many relations involving it. These include 
the magnetic torque and magnetic field generated by it, and the classical magneto-mechanical 
ratio. 

1.  Introduction 
This article arose from the humble aim of verifying from first principles, that the new theory of 
representing any source of magnetic fields as a distribution of elemental magnetic vector charges [1] 
could reproduce the traditionally acclaimed magnetic properties of or due to a circular electric charge 
current [27]. Further, one is amazed at the traditional definition of the magnetic moment either in 
terms of a hitherto non-existent scalar quantity (Gilbert model of 1600 or Dirac’s magnetic charge of 
1931) or in terms of a complete current loop only (Ampère model) [27]. Both models are not exactly 
in line with the moments of other physical quantities.  

After identifying the various continuous distributions of magnetic vector charges and modeling a 
circular current as one of these, we demonstrate by deriving from first principles that a circular current 
has two distinct Cartesian elemental magnetic dipoles which must be fully considered as essential 
elements in deriving its various magnetic properties, and that the above traditional assumptions are 
faulty. Here easier evaluation of vector cross-products is due to expressing vectors in terms of 
Cartesian unit vectors, with the yz -plane as the field plane and the source positions in the xy -plane.  



 
 
 
 
 
 

2.  Continuously distributed electric currents and magnetic vector charges  
Figure 1 shows our models of continuously distributed elements of electric current vectors in 
elemental spaces of line length d , surface area tad , and space volume vd  which have respective 
cross-sections of point P , length  , area a , and spatial current density vectors I , K , J . By 
harmonized definition the line, surface and volume elemental magnetic vector charges are  

 
Figure 1. Elemental spaces d , tad , dv , cross-sections P ,  , a  and current densities I , K , J . 
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Note the alternative representations on the extreme right hand sides where I0 , 
l

I0  and 
aI0  are 

magnitudes of the magnetic vector charges per unit length of the line, surface and volume spatial 
distributions respectively, and in each case the direction is given by the elemental displacement ld . 

Traditionally [27], I the magnitude of I  is inaptly called current, while simultaneously accepting 
ldI  as a current element (that is, an elemental line current). Then K  and J  are confusingly viewed 

as “surface” and “volume” densities of I  over perpendicular components of the cross-sections   and 

a . This is an apparent mix-up between the space occupied and the cross section of that space, due to 
not recognizing the two alternative representations of current distributions. Rather I  should be 
referred to as the current-flux, so that I , K  and J  can also be called point, line and surface current-
flux densities.  

3.  Magnetic moments and magnetic torques of the distinct Cartesian magnetic dipoles 
Figure 2 shows at points 1P , 2P , 3P  and 4P , on a circle of radius  , Cartesian elemental magnetic 
vector charges [1] perpendicular and parallel to the yz -plane: 

  sinˆˆ 0  dd a QQ xx    and    cosˆˆ 0  dd b QQ yy    (2) 
where I00 Q . When paired as Cartesian magnetic dipoles, their respective moments [8] are  
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  bbbbbbbbb ddsddddd mzyxysyρρ ˆˆ ˆˆˆˆˆ 32 


QQQmmm   (3b) 

These Cartesian elemental magnetic dipolar moments are typically distinct as  
ba ss   cos2sin2   and   bbbaaa ddsdsd mm  QQ  (4) 

Integrating (3a) and (3b) from   to    yields the magnetic dipolar moments 

0ˆˆ Qzz  aa mm     (5a) 

0ˆˆ Qzz  bb mm     (5b) 
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Thus the overall magnetic dipolar moment 02ˆ Qz ba mmm  is twice the traditional value for 
a circular current [27].  

 
Figure 2. Separated Cartesian elemental magnetic vector charges pair up into magnetic dipoles. 

 
In a magnetic field zyx HHH zyxH ˆˆˆ  , the two Cartesian elemental magnetic dipoles are 

characterized by magnetic forces HxF  aa dd Qˆ  and HyF  bb dd Qˆ  and their opposites. Then the 
coupled elemental magnetic torques [8] on the dipoles are 

    HxyzyHxyFsτ  aayaazyaaaaa ddHdsHHdsdd mmˆˆˆˆˆˆ QQ  (6a) 
    HyxzxHyxFsτ  bbxbbzxbbbbb ddHdsHHdsdd mmˆˆˆˆˆˆ QQ  (6b) 

Note that ba ττ dd   and ba ττ  . Then the overall coupled torque is 
τHHHyxτττ 2ˆˆ  mmm baxbyaba HH mm   (7) 

The equivalences are accidental and non-basic relations (cannot be used to define torque) because, 
although ba mm  , the differentials adm  and bdm  differ in size and originating elemental dipoles. 
Thus the traditional choice [27] of am  or bm  as the total magnetic dipolar moment is unjustified.  

4.  Magnetic vector potentials and fields of the distinct Cartesian magnetic dipoles 
In figure 3 the positions of the field point P  relative to the source points 1P , 2P  and 3P  are 

  11 ˆˆ ρrR r ,    22 ˆˆ ρrR r  and    33 ˆˆ ρrR r   (8) 
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bŝ  

aŝ  
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These are expressible in terms of r ,  ,   ,   , x̂ , ŷ  and ẑ . For r , all ensuing first order 
approximations are after binomial expansions of indicated fractions in brackets, and application of 
equations (3a), (3b) and (4) for the elemental magnetic dipole moments. 
 

 

 

 Figure 3. Positions of source points P1, P2, P3 in the xy -plane, and field point P in the yz -plane.  
 
The two distinct Cartesian elemental magnetic dipoles generate at P  the harmonized magnetic 

vector potentials  
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This vanishing of bdA  does not mean an absence of bdm   [8]. The total magnetic vector potential is 
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Traditional wisdom [7] uses (10) to assign am   [27] the status of “magnetic dipole moment of the 
loop”, thus inadvertently ignoring existence of bm  . Such a conclusion can be likened to stating that, 
since H

zss  00 Hµ  is the electron’s spin magnetic energy, then the electron’s total spin magnetic 
dipole moment s  reduces to its z -component 

zs ! 
The magnetic fields at point P  due to the two distinct Cartesian elemental magnetic dipoles are  
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Integrating and then transforming unit vectors from Cartesian to spherical system yields  
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Then since ba mm   (equations 5a and 5b), the overall magnetic field becomes 
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This cannot justify taking am   or bm   as the circular current’s only magnetic moment. Also applying 
the relation aAA H  on (10) to get (13), tradition [7] barely “evades” this scrutiny. 

5.  Conclusions 
Depicting an electric charge current in a circle as a continuum of paired Cartesian elemental magnetic 
vector charges, parallel and normal to the field plane perpendicularly bisecting the circle, provides 
realistic models of the structure and attributes of an elemental magnetic dipole. It shows that, contrary 
to tradition, a circular current, whatever its spatial size, consists of two continuous distributions of 
distinct Cartesian elemental magnetic dipoles. Each has a distinct nonzero contribution to the overall 
magnetic dipole moment (which is twice the renowned traditional value), the magnetic field and 
magnetic torque. Characteristically, the total magnetic vector potential is entirely due one of the 
continuous distributions of Cartesian elemental magnetic dipoles. Other fundamental outcomes of the 
above theory include: 
(1) Doubling of the classical magneto-mechanical ratio which agrees with Dirac’s relativistic 

electron theory [3].  
(2) The traditional analogies between the structures and torques of electric and magnetic dipoles 

are deceptively erroneous.  
(3) Quite generally relations involving the traditional magnetic moment need to be looked at. 
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