Classification of Be/X-ray Binaries in the LMC The Big Picture

Naomi van Jaarsveld (SAAO & UCT) Supervisors: Dr. David Buckley Dr. Vanessa McBride

Before we start...

Before we start...

OBe Star:

- \rightarrow Spectral type: late O or early B
- \rightarrow Luminosity class: III-V

OBe Star:

→ Spectral type: late O or early B → Luminosity class: III-V

YOUNG STARS

OBe Star:

- \rightarrow Spectral type: late O or early B
- \rightarrow Luminosity class: III-V
- \rightarrow Rapidly rotating
 - $\rightarrow M_d > 8M_{\odot}$

Decretion disc

Central star

Fig. 2 BeXB system from Fig. 1

Eccentricity=0.3 Orbital period=150 days Circumstellar disc **OBe star** Neutron star Accretion disc ~ 120 km/s ~ 140 km/s

System to scale with neutron star radius x100,000

OBe Star:

- \rightarrow Spectral type: late O or early B
- \rightarrow Luminosity class: III-V
- \rightarrow Rapidly rotating
- $\rightarrow M_d > 8M_{\odot}$

Binary System:

- \rightarrow OBe star
- \rightarrow Neutron star or black hole

BeXBs Observationally Fig. 2 BeXB system from Fig. 1

Central star:

Decretion disc:

 \rightarrow Near IR

Neutron star:

 \rightarrow Hard X-rays

System to scale with neutron star radius x100,000

Why Be/X-ray Binaries?

- HMXBs trace star formation
- Magellanic Clouds: direct measurement of HMXB production rate
- Complete sample of HMXB population:
 - \circ SFR locally
 - Extend to more distant galaxies
 - Metallicity

Why Be/X-ray Binaries?

- HMXBs trace star formation
- Magellanic Clouds: direct measurement of HMXB production rate
- Complete sample of HMXB population:
 - \circ SFR locally
 - Extend to more distant galaxies
 - Metallicity

Antoniou et al. (2015)

Aim

 \rightarrow Characterise BeXB candidates to determine their nature \rightarrow Identify new BeXBs

Candidate Selection?

LMC Candidates

X-ray hardness ratios:

$$HR_i = \frac{R_{i+1} - R_i}{R_{i+1} + R_i}$$

)	i	Energy band
/	1	(0.2 – 0.5) keV
	2	(0.5 – 1.0) keV
	3	(1.0 – 2.0) keV
	4	(2.0–4.5) keV
	5	(4.5 – 12.0) keV

20 Candidates

Aim

 \rightarrow Characterise candidates to determine their nature \rightarrow Identify new BeXBs

How?

Halpha emission – decretion disc

- OGLE light curves variability
- + Blue spectra spectral classification

BeCand-19

Magellanic Cloud emission line survey (MCELS)

eCand-18

X 10520.5-6932

Hα – Red [OIII] – Green [SII] - Blue

SALT H α Spectra

AMAAMAAMA

 \rightarrow Presence of H α confirms disc \rightarrow Profile Fitting:

MANNAM

Measurement	Implication	
Equivalent Width	Extent of decretion disc	
FWHM	Rotational velocity	
V/R (double peaks)	Overdensity in disc	

Aim

 \rightarrow Characterise candidates to determine their nature \rightarrow Identify new BeXBs

<u>How?</u>

Halpha emission – decretion disc
OGLE light curves – variability
Blue spectra – Spectral classification

OGLE Light Curves

 \rightarrow OGLE III & IV fields \rightarrow I band

<u>AIM:</u>

- \rightarrow Variability*
- \rightarrow Orbital periods

- Long period filter
- 51 & 101 day

- Determine significance levels
- 10 000 iterations

- Lomb-Scargle Periodogram (LS)
- Determine significant periods
- Determine period error

- Histogram phased light curve
- Determine bin errors

- Long period filter
- 51 & 101 day

- Determine significance levels
- 10 000 iterations
- Lomb-Scargle Periodogram (LS)
- Determine significant periods
- Determine period error

- Histogram phased light curve
- Determine bin errors

Real Orbital Perio	Candidate	Period (days)	
Droblom	BeCand-1	78.5	
Distinguish between real orbit	BeCand-2	427.0	
periods and aliased pulsations		30.7	
		BeCand-3	40.2
FRED	Sinusoidal	Decanu-5	5.3
· · · · · · · · · · · · · · · · · · ·		BeCand-6	27.5
$\begin{array}{c c} -0.05 \\ \hline & \mathbf{BeCand-2} \\ \hline & & \\ -0.04 \\ \hline \end{array}$	-0.010 BeCand-3 P = 5.3 d -	BeCand-12	73.2
		BeCand-13	290.7
		BeCand-15	Variability
		BeCand-17	Variability
		BeCand-18	None
		BeCand-19	Variability
Phase	Phase	BeCand-20	~30 d

Real Orbital Periods?

Problem:

Distinguish between real orbital periods and aliased pulsations.

Solution:

Metrics from folded light curves:

- 1. Phase Span (PS): FWHM
 - Sinusoidal ~ 0.5
 - FRED < 0.5

Figure 7. Folded light-curve analysis for SXP1323 (folded on the 26.17 d period). The dashed horizontal lines indicate 10 and 50 per cent of the maximum value, where the PS (darker shaded region) and PA (lighter shaded region) are evaluated. Bird et al. (2012)

Real Orbital Periods?

Problem:

Distinguish between real orbital periods and aliased pulsations.

Solution:

Metrics from folded light curves:

- 1. Phase Span (PS):
 - Sinusoidal ~ 0.5
 - FRED < 0.5
- 2. Phase Asymmetry (PA):
 - Sinusoidal ~ 1
 - FRED > 1

Figure 7. Folded light-curve analysis for SXP1323 (folded on the 26.17 d period). The dashed horizontal lines indicate 10 and 50 per cent of the maximum value, where the PS (darker shaded region) and PA (lighter shaded region) are evaluated. Bird et al. (2012)

Real Orbital Periods?

-- XMM candidates

Candidate	Period (days)		
BeCand-2	30.7		
BeCand-6	27.5		
BeCand-12	73.2		

Summary

\rightarrow Identify new BeXBs

Successful???

→ Currently, 16 confirmed BeXB in LMC
→ XMM candidates, 3 very likely BeXB candidates

Increase the BeXB population of the LMC by at least 20%!

Future work

Aim:

 \rightarrow Characterise candidates to determine their **nature** \rightarrow Identify new BeXBs

How?

Halpha emission – decretion disc
OGLE light curves – variability
Blue spectra – Spectral classification
Paper