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Abstract. It is necessary for any quantum key distribution protocol to have an unconditional
security proof which is robust against any kind of attacks that are allowed by the laws of
physics. This is the main advantage of quantum key distribution schemes over classical ones
aiming to achieve the same task. We derive an upper bound on the achievable information
that an eavesdropper may obtain. Instead of the known method of conditioning on the random
variable, we express Eve’s information about the raw key as a function of the error since it is
related to the secret key function. The proposed method reproduces the upper bound that was
derived previously.

1. Introduction

Quantum key distribution (QKD) allows two distant parties, traditionally known as Alice and
Bob who are connected by an authenticated classical channel and insecure quantum channel to
establish a secure random cryptographic key under the intervention of an eavesdropper, Eve [1].
However, there stands a theoretical challenging problem of determining the necessary conditions
for security in QKD schemes. The main task for a security analysis is to figure out what the
length of the final secure key is and perform hashing in order to obtain the final key. The lower
and upper bounds on the secret key rate which involve entropies of two qubit density operators
for the six-state protocol has been found [2]. The security of the protocol against optimal
eavesdropping on noisy states has been studied [3, 4]. We highlight that the unconditional
security proof of the six-state protocol has been shown in various papers [5, 6, 7].

In this paper our goal is to re-derive an upper bound on the achievable information that an
eavesdropper may obtain about the key and also to improve the security threshold. We highlight
that in order to improve the security threshold a known method of conditioning on the random
variable is used for the BB84 protocol [8]. However, in this paper we apply it to the six-state
protocol by expressing Eve’s information about the raw key as a function of the error since it
is related to the secret key function. The proposed method reproduces the upper bound that
was derived previously. This maximum threshold in the secret key fraction is important in the
QKD security of the protocol as it determines the maximum value in which the secret key can
be extracted in the presence of an eavesdropper while the protocol remains secure.



2. The Six-state protocol

The six-state protocol makes use of three different encodings which are defined by the x basis
{|0〉x, |1〉x} := {1

2
(|0〉z ± |1〉)}, the y basis {|0〉y , |1〉y} := {1

2
(|0〉z ± i|1〉)} and the z basis as

{|0〉z , |1〉z}. In this protocol, Alice randomly selects with equal probability (p = 1/3) the basis
she uses and then sends the appropriate qubit to Bob in the base she chose. By making use
of the classical channel, Alice announces to Bob which bases she used. In the event that Bob
measures in Alice’s basis (the sent qubit agrees with the measured qubit) they use these values
to form the key.

Similarly, the six-state protocol [9] displays symmetry just like the BB84 protocol [10].
However, the six-state protocol is more symmetrical due to the fact that three bases span
the full Bloch sphere (symmetrically distributed) as opposed to the BB84 where only a two-
dimensional plane is spanned. In the six-state protocol only 1/3 of the qubits are kept and the
rest discarded. For comparison in the BB84 protocol only 1/2 of the qubits are kept and the
rest are discarded. Due to the symmetry in the six-state protocol, one can compute the bounds
restricting consideration to collective attacks and the joint attacks such that the final state of
Alice and Bob is Bell-diagonal as shown below

ρAB = γ1|φ+〉〈φ+|+ γ2|φ−〉〈φ−|+ γ3|ψ+〉〈ψ+|+ γ4|ψ−〉〈ψ−|, (1)

with γ1 + γ2 + γ3 + γ4 = 1, where the Bell states are defined as

|φ±〉 = 1√
2
(|00〉 ± |11〉), |ψ±〉 = 1√

2
(|01〉 ± |10〉). (2)

If we perform the substitution of Equation (2) into Equation (1) we proceed as follows

ρAB = γ1|φ+〉〈φ+|+ γ2|φ−〉〈φ−|+ γ3|ψ+〉〈ψ+|+ γ4|ψ−〉〈ψ−|
= γ1

2
(|00〉〈00|+ |11〉〈11|+ |00〉〈11|+ |11〉〈00|) + γ2

2
(|00〉〈00|+ |11〉〈11| − |00〉〈11| − |11〉〈00|)

= γ3

2
(|01〉〈01|+ |10〉〈10|+ |10〉〈01|+ |01〉〈10|) + γ4

2
(|01〉〈01|+ |10〉〈10| − |10〉〈01| − |01〉〈10|)

= (γ1

2
+ γ2

2
)(|00〉〈00|+ |11〉〈11|) + (γ1

2
− γ2

2
)(|00〉〈00|+ |11〉〈11|) + (γ3

2
+ γ4

2
)(|01〉〈01|+ |10〉〈10|)

= (γ1

2
− γ2

2
)(|00〉〈00|+ |11〉〈11|+ |00〉〈11|) + 2ε

(|00〉〈00|+ |11〉〈11|)
4

+ 2ε
(|01〉〈01||10〉〈10|)

4

= (γ1

2
− γ2

2
)|ψ+〉〈ψ+|+ 2ε I

4

= (1− 2ε)|ψ+〉〈ψ+|+ 2ε I

4
. (3)

In order to simplify the last step we make use of the additional constraint on the eigenvalues,
i.e., γ3 = ε − γ2 which it has been shown to yield γ1 = 1 − 3/2ε and γi = ε/2 for i = {2, 3, 4}.
This corresponds to a security threshold of 6.8% when evaluated for the above state. The states
|φ±〉 give perfect correlations in the z-basis, |ψ±〉 give perfect anticorrelations in the x-basis
where the probabilities

∑

i γi = 1. As we highlighted that in the original security proof [8] for
the BB84 protocol, in order to improve this security threshold, a conditioning on the random
variable, i.e., W = X ⊗ Y was performed. The random variable contains all the information
about the error positions. However, in our derivation we express Eve’s information about the
raw key IE(ε) as a function of the error positions which appears to be more elegant.

In this protocol, the third basis is conjugate to the others. Since γ3 and γ4 bring perfect
anticorrelations which is equivalent to the quantum bit-error-rate (QBER) in the z-basis then

εz = γ3 + γ4.

The constraints on the eigenvalues yield the error rates in the other bases such that

γ2 = εx − γ4,



and
γ3 = εy − γ2.

Eve’s information can be calculated by using the Holevo bound which states that

IE = S(ρE)− 1

2
S(ρE|0)− 1

2
S(ρE|1). (4)

The entropy of the state after the purification of Eve, ρAB becomes

S(ρE) = S(ρAB) = H({γ1, γ2, γ3, γ4}) ≡ H(γ), (5)

where H is the Shannon entropy. A purification |ψ〉ABE =
∑

i

√
γi|φi〉AB |ei〉E was used to

calculate ρE|b, by using a change of notation for the Bell states, and 〈ei|ej〉 = δij where ei and
ej are two orthonormal basis, we trace out Bob and then project Alice on |+ z〉 for b = 0 and on
|− z〉 for b = 1. Since there is no preference in this attack, because both values are equiprobable
then

S(ρE|0) = S(ρE|1) = h(εz). (6)

By substituting the relationship in Equation (4) and using Equation (5) we get

IE(γ) = H(γ)− h(εz). (7)

Using the above constraints we arrive at

εx − εy = γ4 − γ3.

We add this constraint to εz in order to eliminate γ3 we get

εx − εy + εz = 2γ4.

After dividing each term by εz we get

1 + (εx − εy)/εz
2

= γ4/εz.

Starting from the sum of probabilities (
∑

i γi = 1), we can express γ1 in terms of the other
constraints,

γ1 = 1− (γ2 + γ3 + γ4)

= 1− (εx + εy + εz)/2. (8)

However, in this proof, the error positions are still employed. Instead of conditioning on the
random variable in order to increase the security threshold, the Eve’s information about the raw

key, IE(ε) is used in this derivation. If no error occurred, we obtain h
(

γ1
1−εz

)

and if an error

occurred we obtain h
(

γ4
εz

)

. By averaging over the four subsystems we obtain

IE(ε) = εzh

(

1 + (εx − εy)/εz
2

)

+ (1− εz)h

(

1− (εx + εy + εz)/2

1− εz

)

. (9)

Using the assumption for the depolarizing channel, where we use, εx = εy = εz = ε, then IE(ε)

IE(ε) = ε+ (1− ε)h

(

1− 3ε/2

1− ε

)

.

Using r = 1−h(ε)− IE(ε) to find the secret fraction (one-way postprocessing, no preprocessing
and perfect error correction) and then equating it to zero so that we can obtain the value for ε
we arrive at

ε+ h(ε) + (1− ε)h

(

1− 3ε/2

1− ε

)

= 1. (10)

Solving this equation gives us the lower bound on the bit error rate for the six state scheme using
one-way classical post-processing. Thus, the bound on the bit error rate becomes ε ≈ 0.1261.



3. Conclusion

We have derived the upper bounds to the accessible information for the six-state protocol without
using the technique of conditioning on the random variable and we arrived at the same QBER.
This value shows the limit to which the channel should be considered to be secure for the safe
generation of a secret key. Above this value, the channel is insecure and the parties abort the
protocol.
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