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Abstract. The correct application of Gauss’s law in electrostatics requires symmetry 
considerations which students often struggle with and which are often inadequately explained 
in textbooks. Ampere’s law in magnetostatics is the analogue of Gauss’s law, yet during its 
application symmetry arguments are seldom applied and other means are found to motivate the 
form of the magnetic field. A systematic approach for analyzing the symmetry necessary to 
apply Gauss’s law is first presented.  Then, with the important consideration that the symmetry 
applies to the magnetic force rather than the magnetic field, this approach is used for analyzing 
the symmetry necessary to apply Ampere’s law. This strengthens the conceptual link between 
these two laws, but can also be used to introduce the interesting (but seldom discussed) idea 
that the magnetic field is an axial vector while the electric field is a polar vector. 

1. Introduction 
Several recent papers have highlighted the many difficulties that students struggle with when dealing 
with Ampere’s law. Manogue et al. [1] have described Ampere’s law and discussed an example 
problem in detail.  They identified five skills required to solve it, the first of which is the ability to 
“recognize and use symmetry arguments”.  Analyses of students’ responses to questions involving 
Ampere’s law have shown that  “There is particular difficulty involved with the symmetry aspect” [2], 
that “students were not really thinking about the … magnetic field when they set up their Amperian 
loops” [3] and that “It seems as if the student does not take into account the pattern of field” [4]. 
Manogue et al. [1] have suggested that the frustrations of students can be characterized by the 
sentence “I just don’t know how to get started!” and they offer the excellent advice that “It helps right 
at the beginning of an Ampere’s law problem to know both the direction of the magnetic field and the 
variables on which the magnitude depends.”  Nevertheless, student observations indicate that they do 
not use information about the magnetic field that is accessible to them [3].  It has been suggested that 
“The role of symmetry and the nature of a symmetry argument as used in E&M are not familiar to 
students” [2] and “… the argument is not so simple.  Students and faculty alike can get themselves tied 
up in knots trying to argue which components add and which cancel” [1]. The difficulties involved are 
apparent from the fact that even the symmetry argument presented by Monague et al. [1] has been 
disputed [5].   
 A technique will be described to obtain the direction and functional dependence of the magnetic 
field based on symmetry arguments which are an extension of the method generally applied for 
establishing the form of the electric field when using Gauss’s law. The parallel between Gauss’s law 
of electrostatics and Ampere’s law of magnetostatics is often pointed out and in fact they offer similar 
difficulties for student learning [4].  In principle, then, it may be an advantage to extend the symmetry 
arguments used for Gauss’s law problems to make them applicable to Ampere’s law problems, but this 
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approach is not used in most textbooks and has not been referred in the recent papers already cited. In 
addition, the technique addresses the related problem that “students frequently fail to distinguish 
between forces and fields” [2] 

2. Symmetry arguments for Gauss’s law 
Singh has pointed out that “Most textbooks do not sufficiently emphasize symmetry considerations or 
the chain of reasoning required to determine if Gauss’s law is useful for calculating the electric field” 
[6]. Exceptions are the textbooks by, for example, Cook [7] and Wangsness [8] and since we shall be 
building on the symmetry concepts applicable for Gauss’s law it is necessary to review them briefly.    
 Suppose we have an infinitely long straight cylindrical rod with uniform charge density and wish to 
find the form of the electric field.  The geometry of the problem suggests the use of cylindrical 
coordinates, in which any electric field vector can be written most generally as  
 

                                                 ( ) ( ) ( )ˆ ˆ ˆ, , , , , ,s zE s z E s z E s zφφ φ φ= + +E s φ z . (1) 
 

 Now a system can be described as having a symmetry if one can make some transformation that 
leaves the system unchanged.  Firstly since no real change in the system occurs when the rod is shifted 
along its axis (changing z ) or rotated about its axis (changing φ ), the system has translation 
symmetry with respect to these coordinates and the electric field (and therefore all its components) 
cannot depend on z  or φ : the general expression for the electric field reduces to 
 

                                                             ( ) ( ) ( )ˆ ˆ ˆs zE s E s E sφ= + +E s φ z . (2) 
 

 Note that the s  coordinate cannot be translated because it is associated with a “semi-axis” having a 
definite starting point (the axis of the cylinder).  Secondly for those coordinates having translation 
symmetry (and which have consequently been removed as dependent variables for the electric field 
components) one can consider reversal symmetry: the change z z→ −  and therefore ˆ ˆ→ −z z  (which 
may be visualized as a reflection perpendicular to the rod’s axis) means that if the electric field had an 

zE  component, then this would be reversed in the expression for the electric field despite no real 
change occurring in the system.  Since this is impossible, zE must be zero.   In a similar way one may 
consider a reversal φ φ→ −  and hence ˆ ˆ→ −φ φ  to eliminate the possibility of an Eφ  component, 

leaving the electric field with the form ( ) ˆsE s=E s .   
 After applying this method several times for different geometries it becomes apparent that in 
Gauss’s law problems the coordinates which have translation symmetry always also have reversal 
symmetry and so the components that are eliminated always correspond to the coordinates which have 
been eliminated.  However, it is suggested that one should retain all the steps and distinguish between 
translation and reversal symmetry because this will become important in Ampere’s law problems. 

3. Symmetry arguments for Ampere’s law 
Now consider the Ampere’s law problem posed by Monague et al. [1] of an infinitely long straight 
(uncharged) cylindrical wire carrying a current along its axis, with the current density proportional to 
the distance from the axis.  This wire has a similar shape to the uniformly charged rod previously 
considered (although it is uncharged), but whereas the electric field of the charged rod had the form 

( ) ˆsE s=E s  one now has to justify why the magnetic field of the current carrying wire has the form 

( ) ˆB sφ=B φ . Monague et al. [1] apply a symmetry argument to eliminate the sB  component but state 
“the only way we know to establish the lack of a parallel component is to use the Biot-Savart law”.  
Their method has been criticised by de Wolf [5] who provides alternative arguments and shows that 
both components can be eliminated based on the equation 0d⋅ =∫∫ B aÒ . A different approach which 
we suggest is to introduce one important change in perspective that allows the symmetry arguments 



 
 
 
 
 

which are applied for Gauss’s law problems to be carried over or extended to Ampere’s law problems: 
the infinitely long wire suggests the use of cylindrical coordinates and we write the magnetic field 
vector in general as 
 

                                         ( ) ( ) ( )ˆ ˆ ˆ, , , , , ,s zB s z B s z B s zφφ φ φ= + +B s φ z . (3) 
 

 Firstly no real change occurs in the system when the wire is shifted along its axis (changing z ) or 
rotated about its axis (changing φ ), so the magnetic field components cannot depend on z or φ  
(translation symmetry) and the general expression for the magnetic field reduces to  
 

                                                   ( ) ( ) ( )ˆ ˆ ˆs zB s B s B sφ= + +B s φ z . (4) 
 

 This expression is given by Cook [9], who then abandons the symmetry approach. Taking it 
further, we secondly consider reversal symmetry for the coordinates which we have already found to 
have translation symmetry: a reversal φ φ→ −  and ˆ ˆ→ −φ φ  leaves the system unchanged and 
therefore eliminates the possibility of a Bφ  component, but the change z z→ −  and therefore ˆ ˆ→ −z z  
(which may be visualized as a reflection perpendicular to the wire’s axis) does not leave the system 
unchanged since the current is reversed and now flows in the opposite direction.  Therefore one is left 
with ( ) ( )ˆ ˆs zB s B s= +B s z  instead of the expected ( ) ˆB sφ=B φ , indicating that there must be some 
flaw in the reasoning, which is satisfying to resolve.  
 The fault is a failure to distinguish between forces and fields: neither the electric field nor the 
magnetic field are directly measurable, but can be considered through the effects of their respective 
forces q=F E and q= ×F v B .  Therefore the symmetry of the system should not be considered to 
apply to the fields, but rather to possible forces.  In the electric case the field and force are parallel and 
one is not led to the wrong conclusion, but in the magnetic case the distinction is vital since the field is 
perpendicular to the force due to the cross product.  Adjusting our previously reasoning to apply to the 
magnetic force instead of the magnetic field, we have actually obtained 
 

                                                                 ( ) ( )ˆ ˆs zF s F s= +F s z .  (5) 
 

 Considering that the velocity in q= ×F v B  could be in any direction, the magnetic field must be in 
the φ̂ direction to ensure it is perpendicular to the force i.e., ( ) ˆB sφ=B φ  as required.  It is interesting 
to note that the translational symmetry along the axis ( ẑ  direction) may be relaxed without 
influencing the direction of the magnetic field: if this is done one gets the magnetic force as 

( ) ( )ˆ ˆ, ,s zF s z F s z= +F s z  and the magnetic field as ( ) ˆ,B s zφ=B φ  which is applicable to the toroid.  
This approach for finding the form of the magnetic field is also easily applied in the case of solenoids 
(both circular or with arbitrary cross-section) and uniform flat sheets of current. 

4. Conclusion 
An instructive change in perspective allows the method that is used to analyze the symmetry in 
Gauss’s law problems to be extended to Ampere’s law problems in order to find the form of the 
magnetic field without reference to the Biot-Savart law or other laws of electromagnetism (besides the 
Lorentz force law).  The magnetic field direction is obtained as the direction perpendicular to the plane 
to which the magnetic force is constrained by symmetry.   
 There is some ambiguity here, for given a plane one may choose two opposite directions both 
perpendicular to it.  Symmetry cannot determine which one is correct and indeed, because the 
magnetic field is an axial (or pseudo-) vector rather than a polar vector (like the electric field) the 
correct choice is purely conventional, based on the right hand rule [10]. Thus the symmetry 
considerations are not only directly applicable to Ampere’s law, but in applying them significant 
insight into the nature of the magnetic field can also be obtained. 
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