Anomalous Dimensions of Heavy
Operators from Magnon Energies

Robert de Mello Koch

Mandlestam Institute for Theoretical Physics
University of the Witwatersrand

June 30, 2015



The talk is based on arXiv:1506.05224

with Nirina Hasina Tahiridimbisoa
and Christopher Mathwin



Spectrum of anomalous dimensions in the
planar limit of A/ = 4 super Yang-Mills
theory is solved - thanks to integrability.

In this talk we will study the spectrum of
anomalous dimensions of heavy operators
(with a bare dimension of order N) both in
the gauge theory and in the dual gravity
theory.

This large N but non-planar limit is less
understood than the planar limit - but also
seems well worth study!



J

A
N == New Geometries (LLM)

N == Giant Gravitons

1/2 .
N = Strings (BMN)

== Gravitons (GKPW)




What are the key differences between large N
but non-planar limits and the planar limit?



Distinct multi-trace structures are orthogonal
in the planar limit.
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Orthogonality breaks down at J; ~ N3
(rough estimate) = different trace structures

[Balasubramanian, Berkooz, Naqvi, Strassler, hep-th/0107119]



This spoils the integrability found in the
planar limit of A/ = 4 super Yang-Mills
theory.

Key Idea: map the dilatation operator into
the Hamiltonian of an integrable spin chain
by identifying single trace operators with
states of the spin chain.

Crucially uses the fact that distinct
operator-trace structures don't mix =
dilatation operator doesn't take you out of
the space of single traces.



Two more important differences:
Not all operators are independent: trace

relations; example for N = 2:

Tr(Z)? — 3Tr(Z2*)Tr(Z) + 2Tr(2%) = 0

Non-planar diagrams must be summed.



These issues can be effectively handled using
an approach based on the symmetric group.

Permutations provide the natural language to
describe this sector of the theory.



TrZTvZ =27z  Tr(Z?)=2,"Z"

Lower labels permuted with respect to upper
labels.

TrZTeZ = '\ 27 = Tr(0Z2%%) o = (1)(2)

Tv(Z%) = Z" Z/f(z) = Tr(cZ%%) o= (12)
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Language for arbitrary multitrace operators

Tr(cZ®")=Z" 72 .- Z"
lo(1) " 1o(2) lo(n)



Any multitrace operator composed from k
fields corresponds to a 0 € 5.

Permutations in the same conjugacy class
determine the same operator.

Is this a useful description?



(Z')(ZN ) = 0)6F
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Summing over all permutations is a sum over
all ribbon graphs.



(Z')(ZN ) = o)6F
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Projection operators obey
[PA,O'] =0 PAPB:5ABPA
Thus the sum over all ribbon graphs is

Z TI"(PAO'PBO'_l) == n!5ABTf(PA) = n!5ABdA

o€eS,
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R specifies an irrep of S,. xgr(0) is the
character of o in irrep R.

The Schur polynomials provide a basis for
local operators built from Z.

[Corley, Jevicki, Ramgoolam, hep-th/0111222, Corley, Ramgoolam,
hep-th/0205221]



Can these results be generalized to describe
more than one matrix?



Restricted Schur polynomial
XR(rs)as(Z, Y) =

1 n :
nlm! Z Tr( 5)05(T(0)) (0 Z%" @ Y&™)
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R is an irrep of S, . (r,s) is an irrep of
S, X Sp. «, 8 are multiplicity labels.

[Balasubramanian, Berenstein, Feng, Huang hep-th/0411205;
Bhattacharyya, Collins, dMK arXiv:0801.2061]



Restricted Schur polynomials define a basis.
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[Bhattacharyya, Collins, dMK arXiv:0801.2061, Bhattacharyya, dMK,
Stephanou arXiv:0805.3025. See also Brown, Heslop, Ramgoolam
arXiv0711:0176, Kimura, Ramgoolam arXiv:0709.2158]
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For large N correlators: sum all Z
contractions but only planar W contractions!

A ‘n;{k17k27'”kL}>

[dMK, Smolic, Smolic hep-th/0701066,0701067, Bekker, dMK,
Stephanou arXiv:0710.5372]
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What happens when we move beyond the
free theory?

What is the action of the dilatation operator?



D= —gyTr ([Z Y} [ddz dci/D

[Beisert, Kristjansen, Staudacher, hep-th/0303060]

Mixing is highly constrained: at L-loops at
most L boxes in the Young diagram labeling
the operator can change.

Rather simple expressions in terms of the
factors of the Young diagram.

[Bekker, dMK, Stephanou arXiv:0710.5372, De Comarmond, dMK,
Jefferies arXiv:1004.1108]






|giant momentum; {magnon positions})

Acting on the bulk magnon:
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|giant momentum; {magnon positions})

Acting on a boundary magnon:

Dln; { x1,x2,x3 } ) =g»2/m{<1+%> s { x1, %2, X3 })
—\/%(]n;{xl — 1,X2,X3}>+ ‘n;{X1+1,X2,X3}>)

c is the factor of the box associated with the
open string.



Eigenstate:
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Zero momentum constraint: g; = g,



For a giant graviton with momentum n, we
find for a boundary magnon

E =g (1+ [1—%] —H(qlﬂhl))

and for a bulk magnon

E=¢2-—q—q¢")



The eigenstates enjoy an su(2|2)? symmetry.

Each magnon transforms in a centrally
extended su(2|2)? representation. The
momentum of each magnon determines the
central charge of its representation.

[Beisert, hep-th/0511082, nlin/0610017]

The zero momentum constraint ensures that
the central extension of the eigenstate

vanishes.



The dual string solution



The dual string solution
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Each red segment is a magnon.

The su(2]2) central charges are given
geometrically.

E=/1+2\kP2 =1+ Nk]*+---

[Berenstein, Correa, Vazquez hep-th/0509015, Maldacena, Hofman
hep-th /0604135, arXiv:0708.2272]
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E =1+ 4\sin’ g + 0(\?)
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[Berenstein, Correa, Vazquez hep-th/0509015, Maldacena, Hofman
hep-th /0604135, arXiv:0708.2272]
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Can compute su(2|2) invariant magnon
scattering matrix for scattering of bulk and
boundary magnons.

Results agrees with weak coupling.

Central charges of the total state must be
preserved = scattering is not elastic; not
integrable



XR.(rs)as(Z,Y) =

Z Tr(r s)as( (TR (o)) Tr(c 25" @ Y&

2
DOR (o) = =M N 1.(0) A O (o) .

82 £—
i<j

[dMK, Dessein, Giataganas, Mathwin arXiv:1108.2761, dMK,
Ramgoolam arXiv:1204.2153]
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Conclusions

Combinatorics of summing Feynman
diagrams and constructing bases of local
operators is solved using group
representation theory approach.

Physics of excited giant gravitons ripe for
exploration using gauge/gravity duality.

Many of the lessons/tools that worked in the
planar limit are useful here too!



Thanks for your attention!





