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Abstract. The theory of continuous measurement provides a tool to tmiottie evolution of the wave
function of a single quantum system in real time. We re-dethe master equation in the non-selective
regime for the dynamics of the wave function of a particle mexternal potential which is subject
to continuous measurement of position. In the derivation wesv continuous measurement as the
limit of a sequence of unsharp position measurements. Upghasition measurements are achieved
by selecting generalised measurement observables, or tilematical terms, positive operator valued
measures (POVM) rather than the standard von Neumann posjezperators which are a special class
of the sub-class of POVM's called projection valued measR/M). We also introduce a commutative
algebra that allows us to perform commutative operationls mén-commuting position operators. We then
deduce the stochastic Ito equations for the selective rgirmeasurement.

1. Introduction

In 1987, Caves and Milburn [1] suggested a model for the naotis measurement of the position
of a quantum system. Their model was based on the theory dihcons quantum measurement as
suggested, in 1982, by Barchielli [2] et al. In 1988, Diosj §Bowed that continuous measurement
of position in the selective regime can be represented bytaiedto stochastic master equation. In
this paper we take a simplified approach to re-derive the enasjuations for continuous position
measurement in both the selective and non-selective regirre our approach, we view continuous
position measurement as a sequence of unsharp measurarhpotstion of a quantum system in the
following limit;
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wherer is the time interval between two consecutive measuremerissthe precision parameter of the
measurements andis a finite quantity called the decoherence rate. For histbreasons we shall refer
to this limit as the Barchielli limit. We represent the unghaneasurement of position of a quantum
system by generalised position observables.
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Figure 1. Schematic diagram for the time evolution of a system undegga sequence of measurements
M at time intervalsr. Between two consecutive measurements the closed systdwegwnitarily.

2. Non-selective regime
We consider weak position measurements of a system with pakak degree of freedom, with
outcomest, represented by Kraus operators [4]
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where H is the Hamiltonian of the systent; is the position measurement operator dnc= h/2m
(Planck’s constant divided byr). The effectsk; = M%Mj of the measurements are Gaussian. If at
timet, the state of the system is represented by the density opg(aj, then after a time, the state of
the system is given by (compare figure 1.)
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Inorder to carry out the integration we introduce a comningasuper-algebra [5, 6] with position
operatorsz, andzi which are defined as follows;

p()E = 2p(t) (5)
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Erp(t) = p(t)ir = p(t)i. (6)
Given that the operatat has the following spectral representation,
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wherez are position eigenvalues até(dz) = dz |z)(z| is a projection valued measure. In a similar
way we can expand the operatdrsandzy as follows;
o o
&= / 2’ P_(d2') andig = / z" Pg(dx”). (8)
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The actions of P_(dz') and Px(dz") on any arbitrary operatod on the Hilbert spacé{ are defined as
follows; R R o X R
P (dz")A = A P_(dz') := P(dz) A, 9)
and R o o

Pr(da")A = A Pr(d2") :== A P(dx) (10)

respectively. The equations (9) and (10) are consisteht&guations (5) and (6). Since the operatars
andzr commute with all operators on the Hilbert space we can reveqguation (4) as follows;
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where the integration over the possible measurement sesuias been carried out and the obtained
exponential Taylor-expanded. Substituting equationsu@@)(12) into equation (11) yields the following;
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In the Barchielli limit, equation (13) becomes

We note that the higher order termssrvanish ag- approache$. Equation (14) is the master equation
of continuous position measurement in the non-selectigame.



3. Selective Regime

While we average the state of the system after measurementativpossible outcomes in the non-
selective regime, we have to account for the measuremeuitgés the selective regime. If at a time
t the state of the system is represented by the density opgi@lo then after a time- the state of the
system is given by
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wherep,(z) is the probability of obtaining the measurement resujtven that the state of the system is
p- The inverse of the probability is evaluated as follows;
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and the measurement operator is expanded as follows;
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In doing both expansions we take note of the fact that exaegefms inz? /o~ all terms inc—* and
below vanish in the Barchielli limit. To simplify the evaliien of equation (15), we first evaluate the

measurement part.
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in the Barchielli limit. We now take the approach of [3] and #ind introduce stochastic equations that
govern our measurement resuitsFrom [3] we know thatr; = (2) ;) + \%wt, wherewy is standard

white noise which is defined bjtw;)s; = 0 and (wyws)se = 6(t — s). [3] mentions the mathematical



shortcomings of the equation and introduces the matheatigtivell behaved quantity); which is the
time integrated measurement signal, given by

t
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The integral in equation (19) is generally not easy to evalaad hence we prefer the differential form,
dQi = (Z)ppydt +7~ 3 dW;, (20)
whereW, = f wydt’ is a Wiener process. The Wiener incremetis; satisfy the following Ito rules;

(dW)st = 0, (th) = dt, and(dW;)" = 0 for n > 2. In the Barchielli limit,zr = dQ;. It follows
thatz?72 = (dQ,)? = idt, after applying Ito rules. Equation (18) thus reduces to
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Equation (23) is the master equation for continuous measeme of position in the selective regime.
We refer readers who wish to have in-depth understandindpeoktochastic calculus we used in this
derivation to the book by Gardiner [8].



4. Conclusion

We re-derived the master equations for the continuous measunt of position in both the selective and
non-selective regimes. In the derivation of the master toumwe applied a commutative super-algebra
and the Ito stochastic calculus, which was suggested byi [BpsiIn contrast to Diosi, our approach
is based on combining the Kraus representation of the stetege due to measurement with the Ito
calculus by expressing the integrated measurement sigigl means of a Wiener process. This leads
to the simplification of the derivation. The derived mastguations are important tools to describe state
monitoring and control of individual quantum systems.
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