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Globular clusters (GCs)

* Description:
* Large spherical collections
* 10° to 10°stars

* Ancient objects — stars in late evolutionary
stages — many supernovae / stellar remnants.

¢ High central densities

— favourable conditions for binary interaction

— Spun-down pulsars gain angular momentum
through mass-accretion

— Millisecond pulsars (MSPs) are formed

¢ Fermi LAT and H.E.S.S. revealed GCs as
sources of HE (>100 MeV) and VHE (>100
GeV) gamma-radiation

— for example, Terzan 5 (Terb5)

— 34 MSPs



8l Globular clusters (GCs)
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Y-ray

\e_
CMB, IR, Starlight

Inverse Compton (IC) scattering

¢ Particles ejected by the MSP are accelerated to relativistic
speeds (either in magnetosphere of MSP or due to relativistic
shocks where pulsar winds collide).

¢ Particles diffuse out of the globular cluster and interact with

soft photons (CMB, IR, starlight).
¢ The soft-photons are up-scattered as y-rays in the TeV-band.
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Inverse Compton (IC) scattering

Y-ray

\e_ ¢ To calculate the IC-spectrum, consider the emissivity, given by
ene Zhang et al. (2008):
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¢ The component of interest for our purposes is

** Energy density U,
* Prominent stellar component in GCs
* Must decrease with increasing distance from cluster centre
* Our objective is to derive an energy density profile for the stellar/starlight
component, and solve it for the case of Ter5.



Derivation of the energy density profile

* Assume all stars in GCs radiate
like blackbodies.

* Write down the result for the
energy density contribution of a
single star.

* Scale this result
o down to compensate for
the distance ‘d’ from the
observer to the star,

o and up to account for the
total radiating surface.

“*First, we consider the contribution of a single star:
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| Derivation of the energy density profile

“* We expand our result to include the contributions of all
the stars:

41\ [(R?
* We approximate all the stars to Us = ( - ) 32 I

have solar properties, and assume
spherical symmetry.
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Derivation of the energy density profile

“* We expand our result to include the contributions of all

the stars:

2
* We approximate all the stars to U,(T') _ ATR p(?" )
have solar properties, and assume m

spherical symmetry.
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Derivation of the energy density profile

“* We consequently normalise the mass-density profile:

(Kuranov & Postnov 2006):
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Energy density profile for a typical globular cluster
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Energy density profile for Terzan 5
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u(r)

Comparison of energy densities for Ter5

LI

r
c

10+
e.g. Bednarek & Sitarek 2007:

10

L uOI

RN

LGC u

ul_

L

 Venter & de Jager 2009: \

Amrer*?

[18&2 —3 /6Rt3RC — 2R62]
LGC

R 2
. [6( l6R,R,? —ZRCZ)]

|

—u(n]

average u for |

three zones

10

- -2
10
rlrt



Curvature and IC-spectra for Ter5
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Estimating the systematic error on the energy-density profile
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Concluding remarks

**Predicted IC-spectrum:
* Provides a good fit to the H.E.S.S. data if scaled up
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by a factor 3
X 3 * N_star, N_MSP, eta and <E_dot> scaled up by
~1.3

* shows improvement
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**The error margins on u(r):
* Propagated to the |C-spectrum in a linear fashion
* H.E.S.S. data included within these error margins.
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“*Improvements on the energy density profile:
* HR diagrams of GCs: Upper-limit masses, correct
stellar relations.
* Surface brightness profiles

¢ Improvements on the |C-calculation:
* Construct a cluster magnetic field profile
* Use refined transport equations:
o Greater number of zones in radiation code
without loss of stability







