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Abstract. An entangled bipartite Gaussian state is coupled to two thermal reservoirs, one for
each particle and a harmonic oscillation is allowed between the two particles. The reservoirs
are assumed to have different dynamics and to be coupled to their particles with different
coupling strengths. This allows for a realistic situation where a bipartite state may be shared
between two parties who “keep” their part in different environments. We solve a master equation
previously derived in the non-rotating wave approximation for the system. We show the effect
of a variation in the bath temperature on the entanglement, as well as that of the variation in
coupling strengths.

1. Introduction
Entanglement is one of quantum mechanics’ most useful resources, yet also one of the most

fragile; as such, the loss, and in some cases revival, of entanglement in a system coupled to
an environment, due to said environment, has been widely studied, see e.g. [1] for an extensive
review. As a continuation of previous work [2,3], where the authors studied an initially entangled
bipartite system shared between two parties keeping their respective environments at the same
temperature, we now examine the case where these temperatures are different. This allows for a
somewhat more realistic situation, where an entangled state may be shared between two parties
who are not necessarily expected to keep their environment in the same conditions.

To evolve the state, we use a pre-Lindblad master equation, derived in the Non-Rotating
Wave (N.R.W.) approximation. The derivation can be found in [2–6]. The N.R.W. master
equation is often well suited for systems which are expected to be strongly coupled to their
environments. Other pre-Lindblad equations have been derived, using other methods. One may
in particular cite that of Caldeira and Leggett [7] who used a path-integrals method, or that of
Diósi [8, 9] who obtained an equation valid for low temperatures.

We choose the initial state of the bipartite system to be Gaussian, since there is a formalism
[10–13] which allows for a simple study of Gaussian states. These states form a class of continuous
variables states which is becoming of growing importance to the field of quantum information
processing, both for the ease with which they are manipulated experimentally [14] and the ease
with which they can be analytically studied. The latter has led to a variety of studies of systems
coupled to heat baths, such as [15–17] to cite but a few.



In the following, we will recall the master equation and solve it for the particular dynamics
chosen. We will then discuss some examples of entanglement behaviour.

2. Entanglement dynamics
It was found in [3,18,19] that the dynamics of the entanglement in a bipartite system coupled

to an environment is greatly influence by allowing an harmonic interaction between the system’s
particles. We study a system of two particles of equal mass, each one coupled to its own heat
bath; they have coordinates x1 and x2, momenta p1 and p2; ω0 denotes the frequency of the
oscillation. The overall Hamiltonian reads as
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For our study, we take all masses to be equal. The ω’s denote the frequencies of the bath
oscillators. The initial state is chosen to be the Gaussian state [20,21]
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where s and d denote the distance between the particles and the width of the center-of-mass
system respectively. With position coupling, the master equation becomes
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where T1 and T2 are the temperatures of bath 1 and 2 respectively, γ1 and γ2 the coupling
constants of bath 1 and 2 respectively and [ , ]+ represents the anti-commutator. The 1 indices
denote particle 1 and bath 1, the 2 indices, particle 2 and bath 2. Writing the density matrix
in position representation, ρ(x1, x2; y1, y2), we get
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This equation can be solved to obtain, after some algebra,
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and all the remaining coefficients are as bulky.

A more detailed solution will be found in [22].

3. Observations and concluding remarks
The following figures illustrate some of the possible evolutions of the entanglement. It should

be noted that the behaviours displayed here are obtained in the under-damped case, i.e. when
the harmonic potential is greater than either of the coupling constants. We limit our study to
this particular class of behaviours since it yields the most striking observations [2,3]. Figure 1a,
Figure 2a and Figure 3a illustrate the short time behaviour of the entanglement, whereas
Figure 1b, Figure 2b and Figure 3b show the long time behaviour for the same parameters as
their counterparts’. It is easily observed at first glance that the behaviour of the entanglement
is remarkably similar in all three pairs of figures. The entanglement oscillates with damping
oscillations, over the full range of its value until a certain time. After that time, the oscillations
do not decrease all the way down to 0; eventually the entanglement oscillates over a stable
range. Upon closer examinations of Figure 1a, Figure 2a and Figure 3a, one can see that
the range of entanglement is less when the temperatures are higher (Figure 3a) or when the
coupling constants are stronger (Figure 1a, Figure 2a). This shows that, as one would expect,
the temperatures and the coupling constants are crucial to the survival of the entanglement in
the system we study. Closer examinations of Figure 1b, Figure 2b and Figure 3b yields similar
observations. More precisely, the time at which the oscillations cease to reach the x-axis is longer
if the coupling constants are almost equal and the temperatures are equal, but the upper end of
the range is lower. Figure 4 illustrates how increasing or decreasing s, the distance between the
particle influences the evolution of entanglement. In particular, larger entanglement is obtained
for smaller values of s. This suggests that if one was to ”stretch” the system, the entanglement
it contained would be greatly reduced. One may conclude that the coupling constants γ1 and
γ2, the temperatures of the baths T1 and T2 and the separation between the variables s may be
finely tuned to delay the destruction of the entanglement by dissipation.
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Figure 1: Logarithmic negativity plotted versus time for temperatures T1 = 1 and T2 = 1 with
coupling constants γ2 = 0.8, full line : γ1 = 0.1, dashed line : γ1 = 0.9
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Figure 2: Logarithmic negativity plotted versus time for coupling constants γ1 = 0.79 and
γ2 = 0.8 with temperatures T2 = 1, full line : T1 = 1, dashed line : T1 = 3
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Figure 3: Logarithmic negativity plotted versus time for coupling constants γ1 = 0.79 and
γ2 = 0.8 with temperatures full line : T1 = T2 = 1, dashed line : T1 = T2 = 3
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Figure 4: Logarithmic negativity
plotted versus time for coupling
constants γ1 = 0.79, γ2 = 0.8,
temperatures T1 = 1 and T2, d = 2
and : full line s = 0.1, dashed line
s = 15
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