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Abstract. It is shown that when a circular current is resolved into merged distributions of 
distinct Cartesian x and y component line current elements, each distribution is a complete 
magnetic dipole that selectively creates like Cartesian components of the magnetic torque and 
vector potential, plus only the magnetic field’s other Cartesian components. All these are 
expressible in terms of a distribution’s own magnetic dipolar moment, which is traditionally 
attributed to the whole circular current. In contrast a simple electric dipole aligned on the z-
axis, creates its x and y electric torque components, its full cylindrically symmetric electric 
field and the electric scalar potential, all of which are expressible in terms of the sole electric 
dipolar moment. Each magnetic or electric Cartesian torque component is expressible as a 
cross product of a distribution’s dipolar moment and one Cartesian field component parallel to 
an exclusive Cartesian plane perpendicularly bisecting the mutually parallel intra-dipolar 
displacements, while the distribution’s corresponding potential vanishes in that plane. Under 
such special conditions, tradition compares one surviving Cartesian component of the magnetic 
torque or of the magnetic vector potential to respectively the electric dipole’s combined x and y 
torque components or the whole scalar potential. Seemingly from this and the equality of the 
magnetic dipolar moments of the two component distributions of the cylindrically symmetric 
circular current, tradition incorrectly defines either of these magnetic dipolar moments as that 
of the entire circular current. 

1.  Introduction 
As a follow up on the earlier paper [1], we show that the traditional analogy of the magnetic dipolar 
structure of a circular current to that of a simple electric dipole consisting of separated electric scalar 
charges of identical size but opposite signs has many short comings. This is done by evaluating for 
these magnetic (a circular current) and electric (axial line scalar charge) distributions of dipoles, their 
dipolar moments, torques in any external fields, dipolar magnetic vector and electric scalar potentials 
and dipolar magnetic and electric fields, on the basis that any dipole is a combination of opposite 
equal-sized appropriately existent monopoles. Here an elemental electric current multiplied by the free 
space permeability is denoted and depicted as an elemental magnetic vector charge in natural contrast 
to an elemental electric scalar charge and its traditional analogy of magnetic scalar charge. In this 
article it is observed that the contrasting vector and scalar natures of the elemental magnetic vector and 
electric scalar charges as well as the geometries of the distributions are the primary origin of the many 
interesting differences and similarities between their magnetic and electric properties, some of which 
are traditionally overlooked or misinterpreted. They are revealed in this step by step comparison.  



 
 
 
 
 
 

2.  Moments of and torques on Cartesian magnetic and electric dipoles 
On a circle of radius   lying in the xy-plane and centred at the origin O  in figure 1(a), an azimuthal 
line elemental magnetic vector charge at point jP  of radial position vector jρ  in the jth quadrant is 
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where 0ˆ Ijφ  is its line magnetic vector charge density and 2)1(   jj , as jρ  is at an angle 

20    to the x-axis. Hence the Cartesian elemental magnetic vector charge components  
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Figure 1. Pairing separated equal-sized elemental entities of opposite signs into dipoles: (a) Cartesian 

magnetic vector charges on an xy-circle and (b) electric scalar charges on a z-axis. 
 
exhibit the indicated angular dependent axial line magnetic vector charge densities. When Cartesian 
components at 2P  are paired with the matching but oppositely directed Cartesian components at 3P  
and 1P , they constitute the a and b Cartesian elemental magnetic dipoles respectively. 

While in figure 1(b) at the points P  and P , of axial position vectors zzz ˆ  and zzz ˆ  
on the z-axis, are the line elemental electric scalar charges  

. dzdqdq      (2c) 
These form an elemental electric dipole. Here   are electric scalar charge line densities.  

The two magnetic elemental dipoles and the one electric elemental dipole have dipolar moments of  
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yŷ  
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where their Cartesian intra dipolar displacements or Cartesian dipolar orientation vectors are 
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The (sub) subscripts   and   in (3a) to (3c), and in subsequent discussions below, signify entities for 
or due to opposite elemental magnetic vector or electric scalar charges, that is, respective monopoles.  

Integrating (3a) and (3b) from 0  to    and (3c) from 0z  to zz   yield the moments 
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Each one is equivalent to a charge density size multiplied by an area vector of a real or unreal surface. 
Yet the circular current’s magnetic dipolar moment is twice the (Kennelly) traditional value [28] as: 
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In external magnetic H  and electric E  fields the Cartesian elemental magnetic and electric dipoles 
are characterized by paired magnetic forces 

a
d mF , 

b
d mF  and electric forces eFd . As coupled 

moments of the forces acting on the elemental dipoles, the magnetic and electric torques are: 
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 (7c) 
Each triple vector product in (7a) and (7b) yields one Cartesian magnetic torque component, while the 
duo vector product in (7c) yields two Cartesian electric torque components. These torque components  
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show matched formats and inequalities. Using (5) and (6), the total magnetic and electric torques are 
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  (10) 
The contrasts in (7a) to (10) nullify the traditional analogy between magnetic and electric torques, and 
especially the taking of am  or bm  [28] as the circular current’s total magnetic dipolar moment. The 
second equivalences in (9) and (10) highlight the duo magnetic and lone electric dipolar distributions.  

3.  Dipolar magnetic vector and electric scalar potentials and associated fields 
When the magnetic vector and electric scalar charge distributions in figure 1 are the sources of 
magnetic vector and electric scalar potentials, as well as the associated magnetic and electric fields at a 
field point P, primed symbols signify the charges and their positions. Thus, in figure 2 the field point 
P  in a z- or r-plane is displaced from origin O  by rrr ˆ , and from elemental source Cartesian 
magnetic vector charges at points 3 ,2 ,1 ,P  jj  on a circle of radius   in the - or r-plane by  
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where  sinr  and the geometrical factors fj are functions of r ,  ,  ,   ,   . While in figure 3, 
displacements of P  from electric scalar charges q d  and q d  at P  and P  on the z-axis are  

  ,sinˆcosˆˆˆˆ
e2

1
e2

12
1

 ssrrrfR   θrzrRRR     (12) 



 
 
 
 
 
 

 

 Figure 2: A field point P  in a z-plane and magnetic source points 1P , 2P , 3P , 4P  on a -circle. 
 

where zs  2e , with the geometrical factors f  being dependent only on r ,  , z  .  
Below, each ensuing first order approximation for r  or rz  is after binomial expansion 

of 2
n

jf   or 2
n

f 
 , where 1n  for potentials and 3n  for fields, and application of equations (3a) to 

(3c). Then the two Cartesian elemental magnetic dipoles on the circle in figure 2 and the electric 
dipole on the z-axis in figure 3 will generate at P  the magnetic vector and electric scalar potentials  
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Each of adA , bdA  and dV  has a Cartesian plane where it alone is exactly zero. This is traditionally 
[24] misjudged as absence of a related magnetic dipolar moment, which wrongly implies that the 
latter depends on point P. There is no such inference for the electric dipolar moment! Integrating, and 
then changing to spherical unit vectors, shows that aA  and bA  have all three spherical components: 
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 Figure 3: A field point P  in a z- or r-plane and electric source points P  and P  on the z axis. 
 
Due to relations in (5), the total magnetic vector potential is interchangeably expressed exclusively in 
terms of either am   or bm   and thus acquires cylindrical symmetry: 
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Similarly, the fields at point P  due to the two distinct Cartesian elemental magnetic dipoles in 
figure 2 and the electric dipole in figure 3 are  
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Integrating (16a) to (16c), and changing from Cartesian to spherical unit vectors, shows that, while 
E  does not vary with  , each of aH  and bH  has all three spherical components and varies with  :  

   ,
4

sincossincos3ˆsin1sin3ˆcosˆ 3
0

2

r
a

a 


m 
 φθrH   (17a) 

   ,
4

sincossincos3ˆsin1cos3ˆcosˆ
3

0

2

r
b

b 


m 
 φθrH   (17b) 

.
4

)sinˆcos2ˆ( 3
0r

p





 θrE     (17c) 

Also due to (5), when expressed exclusively in terms of either am   or bm  , the circular current’s total 
magnetic field H  acquires cylindrical symmetry similar to that of E  in (17c): 
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Clearly this similarity cannot justify the tradition [28] of taking either am   or bm   as the circular 
current’s only magnetic dipolar moment. Again the traditional analogy fails. In fact equations (17a) to 
(18) can also be obtained indirectly from equations (14a) to (15) by applying the relations  

AH   and  .VE    (19) 

4.  Conclusions 
It has been shown that traditional analogies between the structures and torques of electric and 
magnetic dipoles are deceptively erroneous. A circular current is resolvable into merged distributions 
of distinct Cartesian x and y component line current elements; each distribution creates like Cartesian 
components of the azimuthal magnetic torque and vector potential, plus only the magnetic field’s other 
Cartesian components, all of which are expressible in terms of the distribution’s own magnetic dipolar 
moment. Equality allows interchangeable use of the magnetic dipolar moments of these two 
complementary distributions and thus gives cylindrical symmetry to the circular current’s magnetic 
properties, so that tradition incorrectly assigns either of these magnetic dipolar moments to the whole 
circular current. In contrast a simple electric dipole aligned on the z-axis, creates its x and y electric 
torque components, its full cylindrically symmetric electric field and the related electric scalar 
potential, all of which are expressible in terms of the sole electric dipolar moment.  
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