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Abstract. The atomic physics relevant to gaseous nebulae is critically examined using
modelling software with particular emphasis on radio recombination lines (RRLs). The
theoretical spectral line intensities can be deduced if we know the population structure of
the bound electrons in the gas under non-thermal equilibrium conditions. The population
structure of hydrogen is solved for various environments using a capture-collision-cascade (C3)
model that incorporates an ambient radiation field. Effects of an ambient radiation field on
the population structure is examined and processes that are stimulated by a radiation field are
included in the model. This has been done as a preliminary investigation to extend the model
to a photoionization code.

1. Introduction
The understanding of the physics of ionized gasses is crucial to many subjects in astronomy.
Emission spectra can be observed from numerous astronomical objects and the study of spectral
lines in these spectra has yielded valuable information regarding the most elementary atomic
processes occurring in the Universe and has proven to be an essential tool in astronomy.

Gaseous nebulae are often permeated by an external radiation field, generally from a nearby
star or stars and the cosmic microwave background radiation (CMBR). To model the theoretical
spectrum that we would expect to see from a specific nebula, it is necessary to have a detailed
knowledge of the atomic processes occurring within the nebula.

A special class of spectral lines results from transitions between highly excited atomic states.
These arise when an electron is captured by an ion into an energy level with a large principal
quantum number n. If the downward cascading electron makes transitions between levels with
small energy differences, it can produce photons that are in the radio regime. Spectral lines that
result from this process that are in the radio regime are referred to as radio recombination lines
(RRLs).

A model for hydrogen plasmas that is applicable to a large portion of the electromagnetic
spectrum, in particular to the radio regime, has been developed. Hitherto, models for gaseous
nebulae have focused on transitions at optical and infra-red wavelengths, while the importance of
processes involving levels with large principal quantum numbers have not always been recognised.

The model simulates the influences of the ionizing radiation, free particle temperature and
density on the excited level population structure of hydrogen. From this, the expected spectral
line intensities can be calculated. The model considers an unbounded pure hydrogen plasma
permeated by an external radiation field. Stimulated processes are important in the Rayleigh-
Jeans limit, so it is necessary to investigate the influence of the incident radiation field on the



population structure.
The model was coded in the programming language C using the MinGW compiler on a

Windows XP platform. The code was written completely independently using algorithms
described in literature and no existing codes were copied.

2. Atomic Level Populations
The level populations of states within an atom or ion would follow a Boltzmann distribution if
the system were in thermodynamic equilibrium (TE). Menzel [1] introduced a correction factor
bn to compensate for the degree of departure from TE of the level population. In this scheme,
the Saha-Boltzmann equation becomes
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The bn factors are called departure coefficients and bn equal to unity indicates strict TE. The
level populations of a gas described by a specific electron temperature Te and electron density
Ne are solved if the departure coefficients for all levels are known.

The condition of statistical balance can be used to set up balance equations of the processes
affecting the populations of each energy level of the atoms. These balance equations are coupled
and need to be solved simultaneously to give the departure coefficients.

Equating all the atomic processes filling and emptying level n, gives the statistical balance
equation
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The left-hand side contains all processes that populate level n. The terms represent radiative
recombination, stimulated recombination, three-body recombination, spontaneous emission,
collisional de-excitation, stimulated emission, collisional excitation and absorption, respectively.

The right-hand side includes all processes that depopulate level n. The terms
represent photoionization, collisional ionization, spontaneous emission, collisional de-excitation,
stimulated emission, collisional excitation and absorption, respectively.

Jν is the mean intensity of the incident radiation field. In this work the electron number
density Ne and the ion number density Ni are decoupled from the bound level populations Nn,
and are taken as constant throughout the plasma. Terms involving Jν are not included in the
previous models dsescribed in Brocklehurst [2], Smits [3] or Storey & Hummer [4].

The number density Ni of atoms in level i can be substituted in the rate equation (2), using
equation (1), to yield a form of the rate equation that depends on the departure coefficients.
This form of the rate equation can be written in matrix form as

a = b ·X

where the row vector a has components
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and the row vector b has components bn, n = 1, 2, 3 . . . .



The diagonal entries of the matrix X represent all the processes depopulating level n and the
non-diagonal matrix elements represent all the processes populating level n. All the processes
involving downward transitions into n from higher levels are above the diagonal and the processes
populating n from lower levels are below the diagonal.

The departure coefficients bn can be obtained by inverting the matrix X and multiplying it
with vector a from the left. The elements of a and X depend on the electron temperature Te,
the density Ne, the external radiation field Jν , and the rates of the individual atomic processes.

3. Atomic calculations
3.1. Bound-bound radiative processes
The Einstein A-values were computed using the expression given by Brocklehurst [5]. The
explicit formula for the bound-bound matrix element of an atomic transition [6] was used.

For very high energy levels (n > 500), the expression in [6] is not appropriate due to the large
number of terms occurring in the hypergeometric series. Instead, the approximation given by
Brocklehurst [2] was used with the bound-bound Gaunt factor as given by Baker & Menzel [7].

The rate coefficients for absorption and stimulated emission were calculated using the Einstein
relations.

3.2. Bound-free radiative processes
A method to compute the bound-free radial matrix elements that is based on a set of recurrence
relations, satisfied by the exact matrix elements for hydrogenic atoms or ion, has been described
by Burgess [8]. These simple recurrence relations allow for fast computing to very high accuracy.

The expression given in [8] for the radiative recombination coefficients αr
n, using a Maxwellian

distribution with a temperature Te for the free electron velocities, was used. A Gaussian
integration method was used to evaluate the integral in the expression for the radiative
recombination. This method does the integration over an arbitrary interval, so that smaller
intervals can be used for energies close to the ionization threshold when the integrand varies
rapidly. A number of five-point Gaussian integrations is done starting with an interval size of
h = 10−4n−1. The interval size is doubled after every five-point integration and the procedure
is terminated when the sum of the integrals are accurate up to six significant digits.

The photoionization cross-section to level n for an hydrogenic atom or ion was calculated
using the formula of Burgess & Seaton [9]. From this, the cross-section for stimulated emission
σs

n was calculated using the Einstein-Milne relations.
For a plasma in an ambient radiation field with mean intensity Jν , the rate of photoionizations

is given by
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where ap
n (ν) is the photoionization cross-section from level n for a photon with frequency ν, and

χn is the ionization potential of level n.
The stimulated emission coefficient αs

n is found by averaging the stimulated emission cross-
section σs

n(v) over the velocity distribution and accounting for the stimulating radiation field.
The stimulated emission coefficient is given by
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The integration involved in the calculations of the photoionization and stimulated emission
coefficients were handled using a Gaussian quadrature scheme as described above for radiative
recombination.



3.3. Collisional processes
The semi-empirical formulae of Vriens & Smeets [10] were used to calculate the collisional rate
coefficients for collisional bound-bound and bound-free transitions. Because the values are valid
over a wider range of temperature, these were used in favour of the more commonly used formulae
of Gee et al. [11]. Vriens & Smeets [10] claim that their values agree within 5 to 20 % with those
of Gee et al. [11].

4. Numerical methods
4.1. Transition rates close to the ionization limit
In principle, an atom has an infinite number of energy levels and thus the solution of the
population structure of hydrogen requires the solution of an infinite number of coupled equations
represented by equation (2). Since the atoms discussed here are not in isolation, there are
physical considerations, like the density, that limit the actual number of states in which an
electron can be found. Therefore, an upper cut-off n∗ was introduced for the highest n level for
which the rate equation will be solved explicitly. The details of how n∗ was determined can be
found in [12].

4.2. Matrix condensation
Burgess & Summers [13] introduced a matrix condensation technique based on Lagrange
interpolation which has been used by a number of authors. The technique condenses the sizable
matrix X to a much smaller matrix, which can be readily inverted. Because the departure
coefficients vary smoothly and slowly with n, the condensation technique can be applied. The
method is presented in detail in [12].

5. Hydrogen Population Structure
The departure coefficients were calculated using codes developed based on the theory and
techniques discussed in the preceding sections. Results were in good agreement with other
capture-collision-cascade (C3) models The results of this work for an n-method C3 model agree
on average within 0.5 % with the results of Brocklehurst [2] and 0.3 % with that of Smits [3].

The problem of whether or not to include Lyman transitions in the calculations when
determining departure coefficients was investigated. The mean free path of Lyman photons
from the different energy levels was investigated under various environmental conditions by
calculating the extinction coefficient of the photons explicitly. It was concluded that the escape
probability of Lyman photons are negligibly small for conditions found in astronomical plasmas
that produce a recombination spectrum. Therefore, it is always appropriate to assume Case B
of Baker & Menzel [7] when determining departure coefficients.

Departure coefficients for C3 models permeated by a radiation field were also calculated. In
general it is important to take the ionizing radiation into account, but this cannot be described
by recombination theory alone and it is necessary to do radiative transfer calculations. The
radiation changes as it propagates through the gas and the gas itself will absorb photons at
specific frequencies as well as emit a diffuse radiation field. The bn problem will then depend
on many more parameters than for a C3 model, in particular it will be geometry-dependent. In
this work, the effects of a radiation field on the departure coefficients was investigated, but the
amplification of lines by stimulated processes was not considered.

The mean intensity of the external radiation field is represented by a blackbody spectrum with
temperature Tr, multiplied by a dilution factor W that depends on geometrical considerations
of the system. For a single ionizing star with a radius of R, the dilution factor at a distance d
(with d � R) from the star will be given by W ≈ 0.25 (R/d)2. For an O star with R = 18R�,
the dilution factor will be W ∼ 10−16 at a distance of 10 pc and W ∼ 10−14 at 1 pc.
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Figure 1. Effect on the population structure of hydrogen of a diluted blackbody radiation field
with temperature Tr = 40 000K with various dilution factors. Parameters for the nebula was
taken as Te = 103 K with Ne = 103 cm−3, assuming Case B. The solid line shows the population
structure if no radiation field is present.

Figure 1 shows the effect that a diluted blackbody field has on the population structure of
hydrogen for a plasma with Te = 103 K and Ne = 103 cm−3. The radiation temperature was
taken as Tr = 40 000 K to represent an O star. For a relatively dense radiation field (W = 10−12,
5× 10−13), the departure coefficients are larger than they are if no radiation field were present.
For less dense fields, the departure coefficients are lowered by the radiation field, as can be seen
for the case W = 10−13 in figure 1. As the density of the field decreases, the bn values approach
the W = 0 case asymptotically from below.

It was found that the effect that a diluted blackbody field has on the population structure
of hydrogen for a plasma can be pronounced. For the example described in igure 1, the relative
change on the bn values can be as much as 45% for a relatively dense radiation field (W = 10−12).

Even though the CMBR has a blackbody spectrum of only 3K, it is very dense and hence
affects the population structure of hydrogen atoms. The result of a 3 K blackbody radiation field
on the population structure of hydrogen was examined for 16 environments with parameters
10 cm−3 < Ne < 104 cm−3 and 300 K < Te < 20 000K. The effects are most noticeable in cool
clouds with low electron densities. The 3 K blackbody radiation field affects the population
structures most typically for 50 < n < 150, increasing the value of the departure coefficients
slightly for these levels. In general the bn values were altered on average by 0.2 % and at most
by an average of 0.6 %.

The influence of free-free continuum on the departure coefficients was also investigated and
was found to be minimal. This is consistent with the work of [14], who found that the effects of
free-free radiation on the bn values are negligible.

6. Conclusion
A comprehensive model for calculating the n-method populations of a pure hydrogen plasma
has been presented. It has been assumed that the nebula is homogeneous, unbounded and
permeated by a constant radiation field. Departure coefficients for bound energy levels were
computed by accounting for all radiative and collisional processes, bound-bound and bound-
free, via all possible transition routes. The model is comparable with the most definitive models
available at present [15].

The solution for the departure coefficients presented here considers only distinct energy levels
of the atoms, known as an n-model. A more complete description resolves the momentum states
and a departure coefficient calculated for every angular momentum state, called an nl-model. In



this model it has been assumed that the angular momentum states are populated according to
their statistical weights. This n-model will serve as the basis for future studies using nl-models.

The code is valid for a larger range of temperatures than any of the current models. Because
the parameters for astronomical plasmas vary greatly, this broadens the code’s potential for
modelling a variety of astronomical environments. Nova shells with electron temperatures
Te < 1 000K have been detected [16], while supernova remnants have temperatures of about
106 K.

The results from the model developed in this work were compared to previous calculations
and found to be in good agreement. Discrepancies are small and can be explained by the
different methods used to calculate atomic transition probabilities and to handle numerical and
computational challenges. One of the objectives of this project was to check for systematic errors
in previous calculation by independently developing code. No such errors were found.

A preliminary investigation of the effects of an external radiation field on the departure
coefficients was done. In principle the external radiation field should be included in the
calculations of bn values, but the incorporation of a radiation field into such a model is not
trivial and it necessitates that the geometry of the system be taken into account. It was found
that the ionizing radiation from a nearby star can have a significant effect on the departure
coefficients of high n levels, as can the CMBR. The influence of free-free emission on the bn

values was found to be insignificant.
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