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Abstract. The two-variable integrodifferential equation for few-body systems is solved using
the Lagrange-mesh method. The method transforms the equation into a system of algebraic
equations that are solved as a non-symmetric matrix eigenvalue problem. Convergence
properties of the solution to the integrodifferential equation in relation to the problem
parameters is investigated. The accuracy of the converged solution is tested by calculating
the binding energies and root-mean-square radii of selected few-body systems. The results are
compared to those generated by other methods.

1. Introduction
The integrodifferential equation (IDE) approach is one of the several techniques devised to
simplify the many-body Schrödinger equation for ease of numerical solution. The approach is
based on the Faddeev formalism where the many-body Schrödinger wave function is decomposed
into a sum of two-body amplitudes that depend on two global variables of the system [1].
The formalism also decomposes the Schrödinger equation into a set of coupled IDEs, for the
amplitudes, that can be solved numerically with comparatively less complexity than the original
Schrödinger equation. Such a decomposition explicitly accounts for two-body correlations in the
system. All the IDEs are identical for systems of identical particles. Therefore, for such systems,
only one IDE needs to be solved. The numerical solutions to the equations have been shown
to be as accurate as other approaches to the solution of the many-body Schrödinger equation.
However, unlike in the other approaches, the form of the IDEs in this approach does not depend
on the size of the system.

The numerical solution of the IDEs has proved challenging because of their characteristic
oscillatory non-local projection kernels. So far the two-variable integrodiferential equations have
been solved using adiabatic approximation techniques [1, 2, 3, 4] that decouples the equation
into two single-variable equations. The challenge with the adiabatic approximation is that the
energies of the systems are often extrapolated from the calculated ones [5]. This raises concerns,
that have not yet been addressed, about the accuracy of the calculated amplitudes. Another,
not so popular solution method for the IDEs, is the perturbation method [6, 7], that solves the
equations iteratively. In this method, the zeroth order (unperturbed) differential equations are
separable in the two variables and can both be readily solved. Both the adiabatic approximation
and the perturbation solutions of the IDEs become generally less reliable for few-body systems,
and particularly for systems involving hard-core interactions [6]. In this paper the Lagrange-
mesh method [8] is explored for the direct solution of the few-body IDEs, for the first time.



The Lagrange-mesh method is a variational method that employs basis functions that are
constructed on a discretized problem domain. The basis functions so constructed have specialized
properties, like orthonormality at the chosen discrete points, which leads to banded matrices
for the Hamiltonian of the problem. This method was shown to generate converged solutions
for the integral Schrödinger equation in momentum space [9], which involve non-local kernels
similar to the few-body IDEs. The Lagrange-mesh method is widely discussed in the literature
[8, 9, 10, 11, 12, 13, 14] and is here explored for solving the few-body IDEs.

This paper is organized as follows. In section 2 the Faddeev formalism is explained and the
IDEs for few-body systems are outlined. Section 3 describes the construction of the Lagrange
mesh matrix elements for the IDEs. Convergence tests of the numerical solutions are discussed
in Section 4 and conclusions are reported in Section 5.

2. The few-body integrodifferential equation
Consider a system of A particles of equal mass m and position vector ~ri, i = 1, · · · , A, in which
two-body interactions V (~rij), where ~rij = ~ri − ~rj , are dominant. The Schröndiger equation for
the many-body system has the form− A∑

i

~2

2mi
∇2
i +

A∑
ij

V (~rij)− E

Ψ(~x) = 0 (1)

where ~x ≡ (~r1, ~r2, · · · , ~rA), E the energy and Ψ(~x) the total wave function of the system. In the
Faddeev formalism, the solution to this many-body problem is constructed by decomposing the
many-body Schrödinger wave function in the form [15]

Ψ(~x) =
A∑
ij

ψij(~x) (2)

where ψij(~x) are Faddeev two-body amplitudes. These amplitudes depend on all the degrees-
of-freedom of all the particles in the system and satisfy 1

2 A (A − 1) coupled equations of the
form

[ T̂ − E ]ψij(~x) = −V (~rij) Ψ(~x) . (3)

where T̂ represents the kinetic energy operator in Eq. (1). All the equations for (3) the
amplitudes ψij(~x) add up to the complete Schrödinger equation for the system. The realization
of numerical solutions to (3) requires the introduction of some approximations to the equation.

The system is characterized by a number of global variables, two of which are the hyperradius
r ∈ [0,∞] determined by the magnitude of all the relative position vectors of the particles in, and
z ∈ [−1,+1] related to one of the hyperangles of the system. These two variables are related

by rij = r
√

1
2(1 + z). The 1

2 A(A − 1) coupled IDEs for the system (3), in these two global

variables, are all identical and can be written in the form [16]

−~2

m

[
∂2

∂r2
+

1

r2

(
4 T̂z −

2 `(`+ 1)

1− z − (3A− 4)(3A− 6)

4

)]
F`(r, z)

+
[
V (r, z)− E

]
F`(r, z) = −V (r, z)

∫ +1

−1
f`(z, z

′)F`(r, z
′) dz′ (4)

where F`(r, z) are the reduced Faddeev two-body amplitudes and ` is the relative orbital angular
momenta of the interacting pair. In Eq. (4), the kinetic energy for the center-of-mass of the



system is removed, and the abbreviation

T̂z =
1

w0(z)

∂

∂z
(1− z)2w0(z)

∂

∂z
(5)

is used. The weight function w0(z) = (1 − z)α0(1 + z)β0 is defined by the parameters
α0 = (3A − 8)/2 and β0 = ` + 1/2, which are specified by the problem of interest. The kernel
f`(z, z

′) projects the angular variables for the other pairs of particles into that of the focus pair.

This kernel is defined in terms of the Jacobi polynomials Pα,βK (z) with normalization hα,βK by
[15]

f`(z, z
′) = wJ(z′)

∞∑
K=0

qα,βK`

hα,βK
Pα,βK (z)Pα,βK (z′) (6)

where (α, β) = (α0, β0) and wJ(z) = (1− z)α(1 + z)β. The coefficients

qα,βK` =
A− 2

Pα,βK (1)

[
(−1)` 21−` Pα,βK (−1

2) + 1
2 (A− 3)Pα,βK (−1)

]
(7)

are related to pairs of particles that are connected and those that are not connected to the {ij}
pair. For systems of particles with differing masses, the first term in the square brackets is
slightly modified.

Note that (4) represent a set of coupled equations for the amplitudes with different values of
`. This set of equations is reduced to one IDE by setting ` = 0. The resulting equation is then
modified by adding the zeroth (K = 0) and subtracting the first (K = 1) order hypercentral
potential multipoles,

VK(r) =
1

hα,βK

∫ +1

−1
V (r, z)Pα,βK (z)w(z) dz (8)

from the equation. The zeroth order multipole accounts for the addition of the effects of higher
orbital angular momentum [16], while the first order multipole accounts for the removal of the
effects of the spurious amplitudes [5]. Only the effects of spurious amplitudes are considered in
the present work. As a result, the two-variable s−state intgrodifferential equation solved is [15]

−~2

m

[
∂2

∂r2
+

1

r2

(
4 T̂z −

(3A− 4)(3A− 6)

4

)]
F (r, z)

+
[
V̄ (r, z)− E

]
F (r, z) = −V̄ (r, z)

∫ +1

−1
f(z, z′)F (r, z′) dz′ (9)

where
V̄ (r, z) = V (r, z)− V1(r)Pα,β1 (z) (10)

and the subscripts on the amplitude are now omitted since they are redundant. In anticipation
of later discussions, equation (9) is cast in the eigenproblem form[

Ĥ0 + V̄ (r, z)
]
F (r, z) + V̄ (r, z)

∫ +1

−1
f(z, z′)F (r, z′) dz′ = E F (r, z) (11)

where

Ĥ0 = −~2

m

∂2

∂r2
− 4 ~2

mr2

(
T̂z −

(3A− 4)(3A− 6)

16

)
. (12)

For bound-state solutions to (11), which are the focus of this paper, specific boundary conditions
need to be satisfied by the amplitudes F (r, z). Such conditions are determined by principles of



quantum mechanics involving the requirement for a realistic description of the physical properties
of the system.

The form of the interaction potentials in the equation determines the type of boundary
conditions to be satisfied by the amplitudes. The asymptotic short- and long-range radial forms
of the amplitudes, for bound states, are

F (r, z)
r→0−→ r(3A−4)/2 and F (r, z)

r→∞−→ e−
√
En r (13)

where En is the energy of one of the states of the system. These asymptotic forms translate into
the boundary conditions

F (0, z) = F (∞, z) = 0 (14)

which are consistent with suppressing the singularity of (12). The amplitudes are also required
to vanish at all other singularities of the Hamiltonian. Since the angular-related part of the
kinetic energy operator does not appear to have singularities, the boundary conditions

F (r,±1) 6= 0 , (15)

are adopted. That is, if the potential does not have singularities in the z domain, then F (r,±1)
are just functions of r. In the next section the numerical solution of (11) is constructed using
the Lagrange-mesh method.

3. Lagrange mesh matrix elements
The Lagrange-mesh method is widely discussed in the literature and the reader is referred to [8]
for details on this method. In this method, the problem domain [a, b] is segmented into intervals
defined by a by a quadrature ∫ b

a
g(x) dx =

N∑
i=1

λi g(xi) (16)

where g(x) is a real function, while xi and λi are the quadrature abscissas and weights,
respectively. The method is characterized by basis functions fj(x) that have the properties
[8]

fj(xi) = λ
−1/2
i δij (17)∫ b

a
fi(x)V (x) fj(x) dx = V (xi) δij (18)∫ b

a
fi(x) f

(k)
j (x) dx = λ

1/2
i f

(k)
j (xi) (19)

where V (x) is a real function and f (k) ≡ dkf/dxk. These properties reduce dynamical equations
for quantum mechanical problems to a simple set of algebraic equations that are readily solved.

A simple example application of the Lagrange functions is provided by the one-dimensional
Schrödinger equation [

− d2

dx2
+ V (x)

]
ψ(x) = E ψ(x) ; x ∈ [a, b] (20)

where V (x) is a scalar potential, ψ(x) the wave function, and E the energy of a given system.
The Lagrange-mesh solution to this equation is constructed by approximating the wave function
as

ψ(x) =

N∑
j=1

cj fj(x) (21)



where cj are variational parameters and fj(x) the N Lagrange functions defined on a grid
a ≤ xj ≤ b (j=1,2,3,. . . ,N). Taking the matrix elements of (20) with the expansion (21) leads to

−
〈
ψ(x) |ψ′′(x)

〉
+ 〈ψ(x) |V (x) |ψ(x)〉 == E 〈ψ(x) | 〉 . (22)

This equation simplifies, thanks to the properties of the Lagrange functions, to the set of
algebraic equations [8]

N∑
j=1

[
−λ1/2 f ′′j (xi) + V (xi) δij

]
cj = E ci , (23)

for the variational parameters ci. Note that the matrix elements in (23) require only the
evaluation of the known functions f ′′j (x) and V (x) at the known points xi. The Lagrange-
mesh method is similarly applied to (11), however, this equation presents non-Hermitian and
non-local operators, which lead to a non-symmetric matrix eigenvalue problem.

The amplitudes in (11) are approximated with the series

F (r, z) =
K∑
i=1

N∑
j=1

Cij Ri(r)Uj(z) (24)

where Cij are variational parameters, Ri(r) and Uj(z) bases functions that satisfy the boundary
conditions (14) and (15). These functions are defined on the grid ri (i = 1, 2, . . . , K) and
zj (j = 1, 2, . . . , N) which are chosen as the roots of the Laguerre and Jacobi polynomials,
respectively, of orders K and N . Lagrange bases defined on this grid are the Lagrange-Laguerre
and Lagrange-Jacobi functions. The Lagrange-Laguerre functions, regularized by r, employed
here have the form [8]

Ri(r) = (−1)i
[
ri r

2wL(r)

hσK

]1/2
LσK(r)

r − ri
(25)

where hσK is the normalization coefficient of and wL(r) = rσe−r the weight function for the
Laguerre polynomials LσK(r) of order K. The parameter σ is usually chosen so that (25) displays
the required boundary behaviour of the exact wave function at small r. However, here σ = 0.
The regularized Lagrange-Jacobi functions have the form [17]

Uj(z) = (−1)N−j

[
(1− z2)µwJ(z)

hα,βN (2N + γ) (1− z2j )µ−1

]1/2
Pα,βN (z)

z − zj
(26)

where µ is the regularizing parameter and γ = α+ β + 1. The values of the parameters (α, β )
are not necessarily the same as those specified in the previous section. However, when this is the

case, then the corresponding polynomials Pα,βN (z) constitute the eigenfunctions of the angular
component of the kinetic energy operator. In general, these parameters need to be optimized
for a given potential.

Using the expansion (24) in (11) with (25) and (26), and constructing the matrix elements
for the equation, leads to the matrix eigenvalue problem∑

kl

{
1

h2
H0
ij,kl + V̄ (h ri, zl)

[
δjl +

√
λj λl f(zl, zj)

]
δik

}
Ckl = E Cij (27)

for the variational parameters, where λi = wJi /w
J(zi) (wJi are the quadrature weights), h a

scaling parameter and

H0
ij,kl =

~2

m

[
T rik δjl −

4

r2i

(
T zjl −

(3A− 4)(3A− 6)

16
δjl

)
δik

]
. (28)



The matrix elements T rij are those given in [8] while T zij are taken from [18]. It should be noted
that the matrix elements in the eigenvalue problem (27) are functions of the quadrature weights
and abscissas, as well as the free parameters h, α, β and µ. Convergence properties of the
solutions to (27) with variations in the bases sizes are discussed in the next section.

4. Convergence tests
The evaluation of the matrix elements discussed in the previous section require the specification
of the parameters {h, µ, α, β}, as well as the roots of the Laguerre and Jacobi polynomials. The
mesh was based on Gaussian quadrature, which were determined using standard routines [19]
with a tolerance of 3 × 10−14. The regularisation parameter µ is determined by the boundary
conditions (15). The value µ = −1

2 was adopted. The scaling parameter h is determined by
the hyperradial range of the total potential of the system [20]. Each particle in the system
experiences an average hyperradial potential described by the hypercentral potential V0(r).
Figure 1 show the three-body to six-body hypercentral potentials described by (8). As can
be seen in the figure, the range of this hypercentral potential depends on the size of the system.
In this work, the scaling parameter was chosen such that h = rm/xN where rm is the range of the
hypercentral potential and xN the last zero of the Laguerre polynomial. The range rm = 20 fm
was used for the three-body and four-body, while rm = 30 fm was used for the five-body and
six-body systems. The parameters of the functions Uj(z) were set to (α, β) = (α0, β0), which
are related to the eigenfunctions of the angular kinetic energy operator.
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Figure 1. (Color online) Variation of the range of few-body hypercentral potentials with the
size of the system.

Test applications of the matrix elements were conducted with the central Volkov potential
[21] and the Ali-Bodmer potential [22] for three-, four-, five- and six-body systems. The
variation of the ground-state energies of the systems with the bases sizes were investigated. The
investigations were restricted only to the cases of equal radial and angular bases size N = K. In
addition, a restriction of M ≥ N , on the number of terms M in the series in (6), was imposed,
based on tests results of the projection function on polynomial and exponential functions.

4.1. Three-body systems
In the first case, the three-body s-state IDE was solved for the 3n (~2/m = 41.47 MeV · fm−2)
and 3α (~2/m = 10.366 MeV · fm−2) systems. The convergence of the ground state energies was



compared with that of the Faddeev equations for the systems, solved in the same way. The
Faddeev EFad and IDE EIDE results are given in table 1. As can be seen from the table, the
Faddeev results converge rapidly to −8.431 MeV for the 3n system and to −4.141MeV for the
3α system. These results coincide with those reported in the literature [23, 24]. The IDE results,
on the other hand, converge very slowly to −8.111 MeV and −3.302 MeV for the Volkov and
Ali-Bodmer potentials, respectively. These results are about 5% and 20% less than those of the
Faddeev for the two potentials. There are several possible causes of these discrepancies, one of
which is the effects of the spurious potential [25].

Table 1. The calculated ground-state energies E0 (MeV) for the three-nucleon (3n) system
and the 3α system as a function of the basis size N2 = Nr ⊗Nz.

3n 3α

N EFad EIDE EFad EIDE

10 -8.410 23 -8.496 29 -7.469 91 -7.571 26
20 -8.430 91 -8.177 31 -4.140 74 -3.302 57
30 -8.430 93 -8.137 88 -4.140 71 -3.301 92
40 -8.430 93 -8.123 90 -4.140 71 -3.301 74
50 -8.430 93 -8.117 36 -4.140 71 -3.301 65
60 -8.430 93 -8.113 78 -4.140 71 -3.301 60
70 -8.430 93 -8.111 61 -4.140 71 -3.301 57

-8.430 93a -4.140 71b

a Reference [23], b Reference [24]

4.2. Many-body systems
To investigate the effects of the spurious potential on the results, ground state energies for
A-body systems, where A = 3, 4, 5, 6, were calculated with the spurious potential eliminated.
The EIDE results are shown in table 2 and table 3 for the Volkov and Ali-Bodmer potential,
respectively. The energies for all the systems converge quite slowly, and, as indicated in [25], do
not appear to be significantly affected by the spurious potential. There is a general discrepancy of
about 11% in the Volkov results compared to the s-wave results of the hyperspherical harmonics
method [23] for the same potential. However, the hyperspherical harmonics results are obtained
with bases sizes in the orders of millions, for six-body system, for example.

The quality of the wave functions is often tested by calculating root-mean-square radii of
the systems studied. The results for the root-mean-square radii of three-body and four-body
systems are presented in table 4 for the Volkov and Ali-Bodmer potentials. The results for the
3α system are about 12% higher than those reported in the literature [24].

5. Conclusion
The Lagrange-mesh method was explored for solving the few-body IDEs. Matrix elements for
the non-Hermitian and non-local operators of the equations were constructed using regularized
Lagrange-Laguerre and Lagrange-Jacobi functions. The resulting non-symmetric matrix was
first solved with standard nuclear potentials for three-body systems. To investigate the effect
of the non-symmetric form of the eigenproblem on the convergence of the numerical solution,



Table 2. Calculated ground-state energies E0 for A-body systems with the Volkov potential
as a function of the basis size N2 = Nr ⊗Nz.

E0 (MeV)

N A = 3 A = 4 A = 5 A = 6

10 -8.484 43 -37.774 91 -80.186 69 -134.889 84
20 -8.162 19 -29.802 67 -82.847 96 -146.360 81
30 -8.132 75 -27.487 53 -69.728 30 -125.455 83
40 -8.121 71 -26.858 43 -64.512 53 -116.858 91
50 -8.116 26 -26.629 04 -62.437 31 -113.429 32
60 -8.113 16 -26.526 83 -61.490 23 -111.863 80
70 -8.111 22 -26.474 50 -61.004 19 -111.060 43

[23] -8.430 9 -30.252 -68.280 -122.776

Table 3. Same as in Table 2 for the Ali-Bodmer potential.

E0 (MeV)

N A = 3 A = 4 A = 5 A = 6

10 -7.609 33 -8.191 16 -9.116 88 -15.654 54
20 -3.335 48 -5.694 18 -7.817 98 -10.331 76
30 -3.310 00 -5.739 99 -8.121 78 -10.615 47
40 -3.304 83 -5.748 70 -8.167 24 -10.649 52
50 -3.303 09 -5.751 76 -8.180 21 -10.659 22
60 -3.302 26 -5.753 33 -8.186 09 -10.664 49
70 -3.301 78 -5.753 99 -8.189 62 -10.666 71

Table 4. Root-mean-square radii for A-body systems with A = 3, 4, 5, 6 for the Volkov (V)
and Ali-Bodmer (AB) potentials, calculated with N = 70.

A 〈 r2 〉1/2V 〈 r2 〉1/2AB

3 1.931 2.725
4 1.238 2.335

the s-wave Faddeev equations and the s-state IDE were solved. The results showed rapid
convergence for the solutions, with the basis size, of the Faddeev equations and a very slow
convergence for the corresponding IDE. Moreover, the Faddeev solutions converged to results
reported in the literature, obtained using other solution methods. However, the IDE solutions
converged to results that are less than the Faddeev results, and different from those obtained
using other solution methods, by about 11%. Based on the results for the Faddeev solutions,



the non-symmetric form for the IDE is not responsible for the slow convergence of the solution.
Therefore, the convergence problems could emanate from the form of the basis functions and/or
the implementation of boundary conditions of the problem.

The IDE was also solved for the ground-state energies of A-body systems where A = 3, 4, 5, 6,
with the contribution of spurious potential removed. Ground state energies and root-mean-
square radii of the A = 3, 4 systems were calculated. The results showed very slow convergence
with the basis sizes, to values ∼ 11% less than those obtained using the hyperspherical harmonics
method. Both the ground-state energies and root-mean-square radii of the systems were
poorly determined, reflecting the possible poor quality of the numerical wave functions. The
convergence of the IDE Lagrange-mesh solutions, albeit slow, and the rapid convergence of the
Faddeev Lagrange-mesh solutions, indicate that the method is a promising tool to generate
direct solutions to the IDE. Further investigations on the effectiveness of the Lagrange-mesh
solution of the IDE are necessary. Work is underway to improve the numerical treatment of the
few-body IDE.
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