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Abstract. The MinPET project aims to locate diamonds within kimberlite by activating
carbon within kimberlite, then using Positron Emission Tomography (PET) to image carbon
density. Distinguishing small diamonds from the background depends crucially on the accurate
reconstruction of detector hit positions. This is subject to two kinds of errors: local errors, where
the position of a hit within a particular detector is not accurately constructed from the incoming
photomultiplier tube signals, and global errors, where the internal parameters that describe the
physical location and orientation of detector pixels do not accurately match reality. Because of
the large number of detectors in a full MinPET unit, there are too many parameters involved
to feasibly adjust them by hand. We have therefore developed a custom genetic algorithm
that iteratively evolves detector parameters in order to optimise the image quality. Results are
presented from before and after the optimisation is performed, indicating that image accuracy
and resolution are improved. This algorithm could be employed periodically in an industrial
setting to automatically correct for detector movements or calibration drift.

1. Introduction
The MinPET project [1] images locked diamonds within coarsely crushed kimberlite (±10cm
rocks), using Positron Emission Tomography (PET). The kimberlite is irradiated with high
energy gamma rays, producing the unstable 11C isotope via a photonuclear reaction. This beta
decays, and the positron annihilation leads to back-to-back colinear 511 keV photons. These
are detected in coincidence by two planes of position sensitive detectors above and below the
kimberlite. A 3D carbon density image is created by back-projecting the lines of response formed
by coincident events from opposite detector arrays.

A laboratory scale detector system has been created, with two arrays of pixelated scintillation
crystals paired to position sensitive photomultiplier tubes. Fast electronics are utilised with
good timing resolution, mostly eliminating any random background arising from separate
positron annihilations being detected within the same coincidence time window. There is
still a background present due to to non-diamond positron annihilation events however. This
is due both to homogeneously distributed carbon throughout the kimberlite, and oxygen-15,
which is inevitably also produced in the irradiation process. Image fidelity is further degraded
by Compton scattering, both within the kimberlite and the detectors. This leads to falsely
reconstructed lines of response. The energy resolution is not sufficient to completely eliminate
this by only accepting 511 keV photons.

The ability of the technique to differentiate small diamonds from this background depends
crucially on the resolution of the detectors. This implies firstly that the detectors must accurately
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reconstruct the positions of detected hits, and secondly that the detectors’ orientation and
position are accurately described within software. We employ a genetic algorithm approach to
optimising various detector parameters, to improve performance in both of these areas. We
refer to the optimisation of position reconstruction within each detector as “local”, as opposed
to “global” optimisation, which involves the relative position of detectors with respect to each
other. Inspiration for this approach was taken from the track-based alignment procedure used
in the ATLAS Transition Radiation Tracker [2], where detector elements are aligned so as to
improve the matching of the reconstructed to known physics behaviour.

2. Detector system
The detector system consists of 16 Hammamatsu R2486 photomultiplier tubes (PMTs), with
16 crossed wire anodes coupled for each direction over a voltage divider network, furnishing
two x and two y signals. Each scintillation crystal is a 1 cm thick, 5 cm diameter disk-shaped
BGO (Bi4Ge3O12) crystal that is further divided into individually wrapped 5 mm segments (or
“pixels”). The detectors are split into an upper and a lower plane to allow coincidence detection.

The crossed wire anodes from the PMTs furnish two voltages for each of x and y, denoted
xa, xb, yc and yd. These are amplified, and are passed to a spectroscopy amplifier. This has a
slower output that integrates the incoming signal size to produce a shaped output, and a fast
output for timing information. The fast outputs from the upper and lower detector planes are
used to determine coincidence, which is then used to gate the data acquisition. In this manner,
only coincident events are recorded, allowing a high event rate.

3. Genetic algorithm
Both local and global optimisation as described above are difficult tasks. Firstly, they need
to find the global optimum, ruling out simple minimisation strategies which can get stuck in
local minima. Secondly, they involve a very large parameter space. As we shall see below, local
optimisation is within a 11-dimensional space, and global optimisation involves 6 parameters per
detector plus another 10 collective parameters. Finally, the optimisation landscapes are highly
chaotic due to statistical noise. This is shown in figure 1, which is a two-dimensional slice of
the global optimisation landscape, showing how the detector system performs as the x and y
position of one of the detectors is varied. The optimisation technique cannot rely on derivatives
in a landscape of this nature.

Landscape
Landscape

Figure 1. Detector performance as a function of x, y position of one detectors (lower is better).

Due to the badly-behaved and poorly quantified nature of the optimisation landscape, we
have created a custom genetic algorithm. Genetic algorithms are an example of evolutionary
algorithms, which are inspired by biological evolution. Evolutionary computation has found
increasing use in physics whenever the solution space has made more traditional approaches
difficult. Examples include fields as diverse as astronomy and astrophyics ([3], [4]), heat transfer
optimisation [5], event selection in high energy physics [6], spectrum fitting in X-ray fluoresence
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[7], nuclear reactor design [8] and many others. Reference [9] contains an example where, as in
our case, a genetic algorithm was used for image calibration.

In the biological analogy, “individuals” are points in parameter space, and their coordinates
are their “genes”. A scoring function is defined that evaluates a given individual in terms of how
well the detector system performs when calibrated according to the parameters that define that
individual. The optimisation proceeds iteratively in “generations”, where the individuals within
each generation are randomly generated from the previous generation, favouring parents with
good scores. Genetic algorithms are highly robust, they are able to find global minima, they do
not need derivatives and they require no assumptions about the structure of the landscape.

The MinPET genetic algorithm is built on the GAlib framework [10], and its basic flow
is shown in figure 2. In each generation, pairs of individuals are selected as parents, with a
probability determined by their score. Offspring are then created from these parents by one
of cloning, crossover or mutation. Cloning directly copies a single parent, in order to preserve
a good solution. Crossover is the analogue of sexual reproduction, where genes are swapped
between individuals. This allows the algorithm to explore different combinations of existing
genetic information, and can break out of local minima to find new minima. Mutation takes
a single individual and randomly perturbs each of its parameters. This allows the exploration
of a given local minimum. A crossover and a mutation are shown in figure 3. The probability
of crossover, mutation or cloning is dependent on the distance in parameter space between
the parents, tuned such that parents from different local minima are more likely to create
offspring via small mutations, reducing the probability that their offspring are kicked out of
their respective minima. After two new individuals are created, there is a random chance of a
mutation, randomly varying the individual, in order to introduce new genetic information into
the population.
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Figure 2. Flowchart of MinPET genetic algorithm.
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Figure 3. Example of a
crossover and a mutation.

4. Local optimisation
The output signals from the crossed-wire anodes, xa, xb, yc and yd, are discussed in section 2
above. Once these are suitably linearly calibrated and amplified, the position of the hit is given
by the ratio of the signals:

x =

(
xa

xa + xb
− 0.5

)
× d , y =

(
yc

yc + yd
− 0.5

)
× d (1)

where d is the diameter of the detector. This reconstruction, however, can be significantly
distorted , as can be seen in the left side of figure 4. Reconstructed hits can be up to 6mm from
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their true positions.
In order to improve performance, we introduce a series of parameters to adjust the

reconstructed position. These consist of an overall scaling factor, a rotation around the origin,
and parameters proportional to x2, y2, x3, y3, xy3 and yx3. These were selected in order to
correct for defects noticed in the reconstructed pixel locations, including an expansions of points
near the centre, incorrect rotations, and asymmetries between x and y directions observed in
some detectors.

Our initial approach to scoring the results relied on employing a 2D peak-finding algorithm
to locate each pixel peak, then calculating a chi-squared for the deviation of each peak from the
actual pixel position. This was however too unstable when the image was severely distorted and
when adjacent pixels were not clearly separated. It was also too computationally expensive. An
alternate scoring function was therefore defined as

Slocal =
∑
i∈H

(hi − pi)
2

|H|
(2)

where H is the set of all detector hits, |H| is the number of hits, hi is the measured position
of hit i adjusted according to the current parameter values and pi is the actual position of the
closest pixel centre to hi.
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Figure 4. Example detector pixel reconstruction before and after optimisation. Grey lines
demarcate pixel boundaries. Red crosses denote pixels that should be empty. Axes are in cm.

Figure 5 shows an example of how the scores of a population migrate with successive
generations for a detector. As generations go by, the population moves closer together, and
there is an overall trend toward better scores.

The optimisation procedure was applied to each detector in turn, with a population size
of 500 and 250 generations. In order to judge the effectiveness of the procedure, a sodium-22
point source was moved along a straight path through the detector array at a series of different
positions, and the FWHM of the point source in the back-projected PET image was measured.
This test was repeated for the best known parameters before the optimisation, and the same
parameters with their values after optimisation. The genetic algorithm was able to reduce the
FWHM by an average of 10% in the direction of movement, 6% in the vertical direction and
15% in the perpendicular direction, a substantial improvement.

5. Global optimisation
Global optimisation proceeds by varying detector element positions and orientations so as to
improve the sharpness of the reconstructed image of a point source. Our initial approach was to
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fit a three-dimensional gaussian to the point source peak, and evaluate the standard deviations
along each axis. This did not yield good results, firstly because of computational complexity,
and secondly because the point source peaks often did not resemble a gaussian closely. We
therefore introduce a new method to quantify peak sharpness, S, defined as:

Sglobal =
∑

(i,j,k)∈W

V (i, j, k)2 (3)

where V (i, j, k) is a three-dimensional histogram that stores the sum of the tubes passing through
the voxel labelled by coordinates i, j and k. The summation extends over a window W around
the point source coordinates. By taking the square of the voxel counts, the score is increased
both by sharpening the peak corresponding to the point source, as well as ensuring that as many
tubes as possible pass through the fitting window W . In a sense the score can be thought of as
a χ2 fit for a flat background, and a good, sharp peak is one that fits this flat background as
badly as possible. Minimisation proceeds by evaluating the inverse, 1/S.

For a single point source in one position, some nonsensical solutions will give rise to good
scores, such as all detectors placed exactly on top of each other. We therefore insist on covering
the whole volume between the detector by sending a series of point sources on different constant
velocity trajectories on a conveyor belt through the detectors. The algorithm simultaneously
optimises all data sets, with the global score defined as the average of the individual track scores
defined in equation 3. In order to form a point source image, each line of response’s position
must be extrapolated back in time based on the velocity and its time stamp. This is highly
dependent on accurately quantifying the velocity. This was measured as accurately as possible,
then included as a parameter in the optimisation.

The total set of parameters to be optimised is thus as follows:

• The belt velocity

• 3D rotation of the detector system relative to the conveyor belt

• 3D position and 3D rotation of lower detector array relative to upper detector array

• 3D position and 3D rotation of each detector (16 in total)

This corresponds to a total of 106 parameters. Optimising in a 106 dimensional space is not
feasible, so we rather proceed in an iterative hierarchical fashion. The algorithm optimises each
set of parameters in the list above separately while holding the remaining parameters constant.
The parameters for a specific detector are optimised one by one, while keeping the other detectors
stationary. The whole procedure is then repeated in a second iteration.

Figure 6 shows the change in global score as this procedure is followed. The optimisation
parameters varied according to stage (more effort was put into the collective coordinates), with
between 100 and 200 generations, and a population between 35 and 50. These numbers are
limited by computational cost, where a back-projected 3D PET image must be created for each
of a series of data sets, in order to evaluate each individual in each generation.

When the overall effect on image fidelity was examined, there were mixed results. While
the overall orientation was improved, the algorithm had a bias towards moving all the detector
elements closer to one another, in effect zooming out the entire image. An overall zoom factor
improves the score as defined in equation 3. The next step would therefore be to use a known
configuration of point sources to fix the scale, combining the distance between known and
reconstructed points with the existing score.

6. Conclusions and discussion
We developed a custom genetic algorithm that successfully optimises detector parameters.
Optimisation leads to significant improvements in the reconstruction of detected positions from
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Figure 5. Change of score with local
optimisation. Each dot represents the score
of one individual in a given generation.
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Figure 6. Change of score with global
optimisation. The x axis shows successive
optimisation stages.

detector signals. The procedure also showed promise for the accurate calibration of the position
and orientation of detector elements. Further work is needed to remove a bias toward reducing
the overall length scale.

This optimisation approach could easily be automated, and regularly deployed in an industrial
setting as part of standard operating procedure, in order to keep a deployed MinPET system
optimally configured. This would combat performance degradation due to calibration drift and
detector element movement due to impacts and vibration.
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