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Abstract.
We calculate to next-to-leading order the cross section of a massless electron scattered off of

a static point charge in the MS renormalization scheme. Since we use the MS renormalization
scheme, our result is valid up to arbitrary large momentum transfers between the source and
the scattered electron. We then investigate the importance of the BN vs. KLN theorems in
various theories as we work towards computing the NLO corrections to the energy loss of a
QCD particle propagating in a quark-gluon plasma.

1. Introduction
The Quark Gluon Plasma (QGP) is believed to be the state of matter in the first few
microseconds after the Big Bang [1, 2]. The QGP has been predicted to exist by the Quantum
Chromodynamics (QCD) at a very high energy density and very high temperature (∼ 180 MeV).
The temperature dependence of the energy density in QCD is one of the results of the lattice
QCD [3,4]. Which shows a rapid change of the energy density at the critical temperature (Tc).
This rapid change has been interpreted as the change of degrees of freedom in the system. Well
below Tc, there are three hadronic degrees of freedom due to the three lightest hadrons: π+,
π− and π0. Well above Tc, there are 2(N2

c − 1) + 2× 2×Nc ×Nf degrees of freedom from the
fundamental gluons and quarks of the theory.

Studying the high p⊥ interactions at RHIC and LHC shows that the jet quenching is due to
the final state energy loss. The leading-order pQCD calculations give a good estimate for the
energy loss [5,6]. The question now is, what do we expect to find if we include the next-to-leading
(NLO) contributions? We wish to check the self-consistency of these pQCD results and to make
the pQCD calculation more quantitative. As a first step towards the NLO pQCD calculations,
we calculate in this paper the NLO corrections to the elastic scattering of a massless electron
scattered off of a static source.

2. The leading term of the scattering cross section
We consider the Lagrangian describing an electron scattered off of a classical source Jµ(x) =

V µδ(4)(~x− ~V x0), where V µ is the unit time-like velocity vector

L = −1

4
FµνFµν + ψ̄

(
i/∂ −m

)
ψ − eψ̄γµψAµ + eJµA

µ, (1)
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The Feynman rules for this Lagrangian will be exactly the same as in the normal QED
Lagrangian [7] in addition to that for each external source we write −ieV µ. Let p and p′ to be
the momenta of the incoming and the outgoing electrons respectively. The delta function from
the source Jµ(x) ensures the conservation of energy Ep′ = Ep = E and that the momentum
transfer to be q = p′ − p. Now we write down the amplitude of the leading term using the
Feynman rules

iM0 =
p p′

q = p′ − p

=
i e2

q2
us
′
(p′) γ0 us(p). (2)

We recall the identity
∑

s u
s(p) ūs(p) = /p + m, the trace technology and the properties of the

γ-matrices. The leading term of the differential cross section will be(
dσ

dΩ

)
0

=
2α2

q4
(
2E2 − p · p′

)
, (3)

where we set the mass of the electron to be zero.

3. Renormalization of the Lagrangian
The NLO diagrams usually contain either fermion or photon loops. These loops require
integrations over the loop momentum which usually diverge in 4-dimensions. In order to
remove the divergences from our calculations, we first define the divergent parts by using
the dimensional regularization to regularize the UV divergences and the mass regularization
for the IR divergences. Then we renormalize the Lagrangian using the systematic way of
renormalization [7], then we apply the renormalization scheme to get rid of the UV divergences.
In this paper, we use MS renormalization scheme to tame the UV divergences as we are dealing
with a massless theory [8]. We will follow the calculations of the differential cross section with
massive electron while using MS allows us to set me = 0 safely.

The Dimensional regularization requires replacing the 4-momentum integral by an integral
over the momentum in d-dimensions. Which also requires rescaling the electron charge e by the

factor µ
4−d
2 , where µ is any mass scale to ensure that e remains dimensionless [9]. At the end of

the calculations, the physics should not depend on this scale.

3.1. Vacuum Polarization
The amplitude for the vacuum polarization is given by

iMp =
p p′

q

k + q
q

k

= iM0
α

π

(
1

3
log

(
−q2

µ2

)
− 5

9
+O(m2)

)
. (4)

The differential cross section due to the interference between the leading and the vacuum
polarization amplitudes, neglecting the terms that are in O(m2), will be(

dσ

dΩ

)
PL

≈
(
dσ

dΩ

)
0

α

π

[
2

3
log

(
−q2

µ2

)
− 10

9

]
. (5)
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3.2. Electron Self Energy
The amplitude of the electron-self energy in MS renormalization scheme is given by

Σ2(/p) =
α

4π

[
(/p− 2m) +

∫ 1

0
dx (4m− 2x/p) log

(
µ2

(1− x)m2 − x(1− x)p2 + xm2
γ

)]
, (6)

where mγ is the mass of the photon to regularize the expected IR divergences from the electron
self-energy. The Fourier transform of the two point correlation function of the electron self-
energy is given by [7] ∫

d4x 〈Ω|T (ψ(x)ψ̄(0)) |Ω〉 eip·x =
i

/p−m− Σ(/p)
. (7)

This means that the pole is shifted by Σ(/p), so the renormalized mass is not the physical
mass and the residue of this pole is no longer one [8]. Thus our goal now is to find the correction
to the residue and the relation between the renormalized mass m and the physical mass me.
The physical mass can be given by the position of the pole where we have

me = m

[
1 +

α

4π

(
4 + 3 log

(
µ2

m2

))
+O(α2)

]
, (8)

while the correction of the residue can be given by the derivative of the electron self-energy
amplitude at the physical mass. The residue of the pole will be

R = 1 +
α

4π

[
2 log

(
m2

m2
γ

)
− log

(
µ2

m2

)
− 4

]
+O(α2). (9)

In contrast to the On-shell renormalization scheme, the value of the residue of the pole is no
longer one, where the correction to the residue is in O(α). Which means we have to multiply
the amplitude by the value of R1/2 for each external leg, which means that we multiply the
differential cross section by R2 [8]. We note that all the corrections will be in higher orders of α
except the leading term. So the only affected term by this correction is the leading term, which
becomes(

dσ

dΩ

)
L

= R2

(
dσ

dΩ

)
0

=

(
dσ

dΩ

)
0

[
1 +

α

π

(
log

(
m2

m2
γ

)
− 1

2
log

(
µ2

m2

)
− 2

)]
+O(α4). (10)

The contribution of the self-energy diagram at one loop is zero since the contribution of the
diagram due to the self-energy of the incoming electron is exactly the same as the contribution
due to the self-energy of the outgoing electron with a relative sign difference.

3.3. Vertex Correction
The amplitude of the vertex correction is given by

iMV =

p

p− k

k

p′ − k
q

p′

=
4iπα

q2
ūs
′
(p′)

(
γ0 · F1(q

2) +
iσ0νqν

2m
F2(q

2)

)
us(p), (11)

where F1(q
2) and F2(q

2) are the form factors, which in the limit −q2 >> m2 will be

F1(q
2) ≈ α

2π

[
− log

(
−q2

m2

)
log

(
−q2

m2
γ

)
+

1

2
log2

(
−q2

m2

)
+ 2 log

(
−q2

m2

)
− 1

2
log

(
−q2

µ2

)
+
π2

6

]
.

(12)
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We see that F2(q
2) is negligible in the limit m→ 0. The differential cross section due to the

interference between the vertex and the leading amplitudes will be(
dσ

dΩ

)
V L

≈
(
dσ

dΩ

)
0

α

π

[
− log

(
−q2

m2

)
log

(
−q2

m2
γ

)
+

1

2
log2

(
−q2

m2

)
+2 log

(
−q2

m2

)
− 1

2
log

(
−q2

µ2

)
+
π2

6

]
. (13)

We note that equation (13) contains IR divergences which appear as a single pole when we send
mγ to be zero in addition to the double pole when we set both me and mγ to be zero.

3.4. Bremsstrahlung Correction
The detectors usually can not differentiate between the photon emitted from the vertex and the
bremsstrahlung radiation, which require adding the following correction

iMB =

p
p− k

k

p′ − k
q

+
p p′

q

p′ − k
k

. (14)

Equation (14) represents the diagrams describing the bremsstrahlung correction. According
to the Bloch-Nordsieck (BN) theorem, one should sum over all emitted soft photons with energy
less than the experimental energy resolution (∆) to get rid of the IR divergences due to the zero
mass of the photon [10]. We consider first the final state soft bremsstrahlung diagrams (i.e an
emission of a soft photon either from the incoming and/or the outgoing electrons). In this case,
we will be able to use the eikonal approximation which allows us to ignore the linear terms in
k from the numerator of the amplitude as |k| � |p′ − p|. The amplitude of the final state soft
bremsstrahlung will be

iMf,S
B = ieM0

(
p′ · εr∗

p′ · k
− p · εr∗

p · k

)
. (15)

The contribution of the final state soft bremsstrahlung to the differential cross section
neglecting the terms that are in O(m2, m2

γ) will be(
dσ

dΩ

)f,S
B

≈
(
dσ

dΩ

)
0

α

π

[
log

(
−q2

m2

)
log

(
∆2

m2
γ

)
− log

(
−q2

m2

)
log

(
E2

m2

)
+

1

2
log2

(
−q2

m2

)
+ log

(
E2

m2

)
− log

(
∆2

m2
γ

)
− π2

6

]
. (16)

The addition of equations (10), (13) and (16) is free of the IR divergences, but we still have
another kind of divergences as we send m to be zero which is called the collinear divergence.
Where the detector can not differentiate between an electron and an electron associated with
a photon emitted or absorbed collinearly with the incoming or the outgoing electrons. Here
we have to use the more general theorem made by Kinoshita, Lee and Nauenberg which is
known as the KLN theorem stating that one should sum over both emitted and absorbed hard
photons within a cone of an angle less than the experimental angular resolution (δ) [11,12]. The
contribution of both initial and final state hard bremsstrahlung will be(
dσ

dΩ

)H
B

≈
(
dσ

dΩ

)
0

α

π

[
log

(
δ2E2

m2

)(
log

(
E2

∆2

)
− ∆2

2E2
+

2∆

E
− 3

2

)
+ log

(
∆2

E2

)
− π2

3
+

13

4

]
.

(17)
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We see that the linear and quadratic terms in ∆ can not be ignored as in [12], since it is
multiplied by a divergent part producing either a finite piece or divergent piece depending on
how small the ∆ is. Regarding asking this kind of question we look at similar terms to cancel
these suspicious terms. The only way to get similar terms with a relative sign is discussed in [13]
by checking the sub-leading collinear divergences from the soft bremsstrahlung which appears
beyond the eikonal approximation. Such a calculation requires further work where it should be
done carefully as we are interested in the remaining finite pieces from each calculation unlike
in [12,13].

It is obvious that the KLN theorem is the more general form of the BN theorem, but we
see that only including the final state soft bremsstrahlung will remove the IR divergences and
including both initial and final states hard bremsstrahlung will remove the collinear divergences.
Such a treatment with both theorems independently is inconsistent. So we have to include
the initial state soft bremsstrahlung which will add more IR divergences that we must take
care of. This problem has not been mentioned in [12], while it is been first introduced
by [14–16], a more recent discussion can be found in [13]. Where the authors suggest to
include the disconnected diagrams to fix the problem. We usually do not add the disconnected
diagrams where they describe a non-scattering process. However, the interference between the
disconnected diagram with the emission and absorption process produces a fully connected cut
diagram. The contribution from adding these diagrams plays an important role in IR cancellation
from the initial state as it is shown in [13–16].

Further work needs to be done by including the disconnected diagrams very carefully to get
rid of the extra IR divergences from the initial state soft bremsstrahlung and to obtain the
remaining finite pieces for the differential cross section.

3.5. Box Correction
The amplitude of the box diagram is given by

iMBO =
p

kk − p
p′

p′ − k. (18)

It is obvious that the box diagram does not contain any ultraviolet divergences, so we do
not need to perform the dimensional regularization. We use the trick made by R. Dalitz [17]
to simplify the integrals in this diagram. The differential cross section due to the interference
between the leading and the box amplitudes will be(

dσ

dΩ

)
BOL

=
πα3E

pQq2
(p−Q) +O(α4) , Q = |q|. (19)

3.6. NLO correction to the differential cross section in Rutherford Scattering
Now we include the NLO contributions mentioned above to the differential cross section
without including the initial state soft bremsstrahlung and the sub-leading terms from the
soft bremsstrahlung beyond the eikonal approximation (as discussed above, they require more
careful work). Since µ is arbitrary, We choose it to be −q2, then we find

dσ

dΩ
=

(
dσ

dΩ

)
0

[
1 +

α

π

(
log

(
∆2

E2

)(
1 + log

(
−q2

E2δ2

))
+

3

2
log

(
−q2

E2δ2

)
− π2

3
+

5

36

+ log

(
δ2E2

m2

)(
2∆

E
− ∆2

2E2

))]
+
πα3E

pQq2
(p−Q) +O(α4). (20)
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4. Conclusion
In this paper, we calculated the elastic scattering differential cross section, including the next-to-
leading order corrections of a massless electron scattered by a classical static point charge. These
corrections come from the photon self-energy, vertex, bremsstrahlung and the box diagrams. We
found that all UV divergences are absorbed by the counter terms in the MS renormalization
scheme. We also saw that unlike most of the renormalization schemes, using MS shows that the
contribution from the vacuum polarization correction remains finite in the zero mass limit.

Applying the BN theorem provides the usual cancellation of the IR divergences from the
vertex with the one from the final state soft bremsstrahlung. We also note that applying the
KLN theorem removes all the collinear divergences by including both initial and final state hard
bremsstrahlung. But we still need to add the initial state soft bremsstrahlung correction to stay
in the spirit of the more general KLN theorem.

More work to be done by checking the calculations of the soft bremsstrahlung beyond the
eikonal approximation as well as including the disconnected diagrams that contribute with the
same order of α to get a finite form of the differential cross section; equivalently, we expect
a result that is valid up to arbitrary large momentum exchange. Our result also satisfies the
Callan-Symanzik equation [18], where it is straightforward to check that the differential cross
section at NLO is independent on the mass scale µ.
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