Thermal Model Description of Collisions of Small Nuclei

J. Cleymans
University of Cape Town, South Africa
Work done in collaboration with:

Boris Hippolyte (France)

Helmut Oeschler (Germany)

Natasha Sharma (India)

Krzysztof Redlich (Poland)

arXiv:1603.09553
Use of Thermal Concepts in Heavy-Ion Collisions Comparison of Chemical Freeze-Out Criteria The Energy Region of NICA, FAIR, NA61, BES,... Disappearance of Maxima in Small Systems Conclusion

Local Organizing Committee:
Z. Buthelezi (iThemba)
J. Cleymans (UCT) (chair)
S.H. Connell (UJ)
A.S. Cornell (Witwatersrand)
T. Dietel (UCT)
N. Haasbroek (iThemba)
W.A. Horowitz (UCT)
D. Kar (Witwatersrand)
B. Mellado (Witwatersrand)
S. Yacoob (UCT)

International Advisory Committee:
T. Camporesi (CERN)
D. Chariton (Birmingham, UK)
A. Deandrea (Lyon)
J. Ellis (CERN, London)
P. Giubellino (CERN)
H. Gray (CERN)
J.W. Harris (Yale)
U. Heinz (Ohio State)
P. Jenni (Freiburg, CERN)
G. Martinez (Nantes)
H. Oeschler (Heidelberg)
K. Redlich (Wroclaw)
H. Satz (Bielefeld)
Y. Schutz (IN2P3, France)
A.S. Sorin (Dubna)
D.K. Srivastava (Kolkata)
O. Steinkamp (Zuerich)
H. Stoecker (Frankfurt)
R. Voss (CERN)
G. Wilkinson (Oxford)
Nu Xu (Berkeley, Wuhan)

Protea Hotel Kruger Gate
South Africa
Outline

Use of Thermal Concepts in Heavy-Ion Collisions

Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES,...

Disappearance of Maxima in Small Systems

Conclusion
Particle Multiplicity in Heavy Ion Collisions

\[\frac{dN_{\text{ch}}}{d\eta} \]

- ALICE (PRL 106 (2011) 032301)
- ATLAS (PLB 710 (2012) 363-382)
- CMS (JHEP 1108 (2011) 141)

\[\eta \]

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

0-5% 5-10% 10-20% 20-30%

ALICE symmetrized Double Gaussian fit

NICA, FAIR, NA61, BES...
Particle Multiplicity in Heavy Ion Collisions

About 24 000 particles are produced in a heavy ion collision at the LHC.

Hence: Use Concepts from Statistical Mechanics to analyze the final state
e.g. use Energy Density, Particle Density, Pressure, Temperature, Chemical Composition, ...

These concepts turn out to be useful at other energies, RHIC, SPS, SIS, NICA ...
Chemical Freeze-Out Temperature

Unexpected Result: Maximum in the Net Baryonic Density

\[\sqrt{S_{\text{NN}}} \]

\[\varepsilon^* = \varepsilon - m_N \rho \]

J. Randrup & J. Cleymans
K. Grebieszkow (NA61/SHINE) talk at CPOD2016:
Maximum in the K^+ / π^+ ratio disappears in small systems
To analyze the particle ratios use:

- the Wroblewski factor
- $s/T^3 = 7$ describes chemical freeze-out
Strangeness in Heavy Ion Collisions

vs

Strangeness in pp - collisions

Use the Wroblewski factor

\[\lambda_s = \frac{2 \langle s\bar{s} \rangle}{\langle u\bar{u} \rangle + \langle d\bar{d} \rangle} \]

This is determined by the number of newly created quark – anti-quark pairs and before strong decays, i.e. before \(\rho \)'s and \(\Delta \)'s decay.

Limiting values:
\(\lambda_s = 1 \) all quark pairs are equally abundant, SU(3) symmetry.
\(\lambda_s = 0 \) no strange quark pairs.
Wroblewski Factor

![Graph showing the Wroblewski Factor λ_s vs. $\sqrt{s_{NN}}$ (GeV)](image-url)
Use of Thermal Concepts in Heavy-Ion Collisions

Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES,...

- **Disappearance of Maxima in Small Systems**
- **Conclusion**

Graph:

- **s/T^3** vs. **$\sqrt{s_{NN}}$ (GeV)**

- **Total**
- **Mesons**
- **Baryons**

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In this region the interplay between temperature and baryon chemical potential leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+, Ξ^-/π^+ and Ω^-/π^+ ratios which occur at different beam energies.

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a • temperature $T = 151$ MeV,
• baryon chemical potential $\mu_B = 327$ MeV,
• energy $\sqrt{s_{NN}} = 11$ GeV.

In this region the interplay between temperature and baryon chemical potential leads to peaks in the $\Lambda / \langle \pi \rangle$, K^+ / π^+, Ξ^- / π^+ and Ω^- / π^+ ratios which occur at different beam energies.

In the statistical model a rapid change is expected as the hadronic gas undergoes a transition from a baryon-dominated to a meson-dominated gas. The transition occurs at a

- temperature $T = 151$ MeV,
- baryon chemical potential $\mu_B = 327$ MeV,
- energy $\sqrt{s_{NN}} = 11$ GeV.

In this region the interplay between temperature and baryon chemical potential leads to peaks in the $\Lambda/\langle \pi \rangle$, K^+/π^+, Ξ^-/π^+ and Ω^-/π^+ ratios which occur at different beam energies.

Use of Thermal Concepts in Heavy-Ion Collisions
Comparison of Chemical Freeze-Out Criteria
The Energy Region of NICA, FAIR, NA61, BES,...

Disappearance of Maxima in Small Systems

Conclusion

J.C., B. Hippolyte, H. Oeschler, K. Redlich, N. Sharma arXiv:1603.09553

Use of Thermal Concepts in Heavy-Ion Collisions

Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES, ...

Disappearance of Maxima in Small Systems

Conclusion

J.C., B. Hippolyte, H. Oeschler, K. Redlich, N. Sharma arXiv:1603.09553
Use of Thermal Concepts in Heavy-Ion Collisions
Comparison of Chemical Freeze-Out Criteria
The Energy Region of NICA, FAIR, NA61, BES...

Disappearance of Maxima in Small Systems

Conclusion

J.C., B. Hippolyte, H. Oeschler, K. Redlich, N. Sharma arXiv:1603.09553
Use of Thermal Concepts in Heavy-Ion Collisions

Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES,...

Disappearance of Maxima in Small Systems

Conclusion

J.C., B. Hippolyte, H. Oeschler, K. Redlich, N. Sharma arXiv:1603.09553
Small systems.

- Use the canonical ensemble with strangeness conservation (see Ph.D. thesis of Krzysztof Redlich).
- Introduce two volumes: global volume and a strangeness correlation volume.
- Reduce the strangeness correlation volume to describe small systems.

J.C., B. Hippolyte, H. Oeschler, K. Redlich, N. Sharma
arXiv:1603.09553

Maximum in K^+ / π^+ ratio disappears

THERMUS, SCE
$\mu_q = 0, \gamma_s = 1, R=10 \text{ fm}$

$\sqrt{s_{NN}} [\text{GeV}]$

K^+ / π^+

- $R_c = 9.5 \text{ fm}$
- $R_c = 6.0 \text{ fm}$
- $R_c = 4.0 \text{ fm}$
- $R_c = 3.0 \text{ fm}$
- $R_c = 2.5 \text{ fm}$
- $R_c = 2.0 \text{ fm}$
- $R_c = 1.5 \text{ fm}$
- $R_c = 1.2 \text{ fm}$
Maximum in Λ/π^+ ratio survives

Graph:

- **Title:** THERMUS, SCE
- **Equation:** $\mu_\gamma = 0$, $\gamma_s = 1$, $R=10$ fm
- **Legend:**
 - $R_c = 9.5$ fm
 - $R_c = 6.0$ fm
 - $R_c = 4.0$ fm
 - $R_c = 3.0$ fm
 - $R_c = 2.5$ fm
 - $R_c = 2.0$ fm
 - $R_c = 1.5$ fm
 - $R_c = 1.2$ fm

Axes:
- $\sqrt{s_{NN}}$ [GeV]
- Λ/π^+
Use of Thermal Concepts in Heavy-Ion Collisions

Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES...

Disappearance of Maxima in Small Systems

Conclusion

\[\text{THERMUS, SCE} \]

\[\mu_q = 0, \gamma_s = 1, R = 10 \text{ fm} \]
Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES,

Disappearance of Maxima in Small Systems

Conclusion
Conclusions

- Maximum in K^+ / π^+ ratio disappears for small systems,
- Maximum in Λ / π ratio SURVIVES for small systems,

If this is confirmed experimentally then a hadronic scenario explains the behaviour seen in the hadronic ratios and there is no need for other mechanisms.
Conclusions

• Maximum in K^+/π^+ ratio disappears for small systems,
• Maximum in Λ/π ratio **SURVIVES** for small systems,

If this is confirmed experimentally then a hadronic scenario explains the behaviour seen in the hadronic ratios and there is no need for other mechanisms.
Comparison of Chemical Freeze-Out Criteria

The Energy Region of NICA, FAIR, NA61, BES,...

Disappearance of Maxima in Small Systems

Conclusion

Net baryon density ρ_B (fm$^{-3}$)

Temperature T (GeV)

Hadronic freeze-out

$S = 0$ & $Q/B = 0.4$

no excluded volume

excluded volume
Comparison of Chemical Freeze-Out Criteria

Disappearance of Maxima in Small Systems

Conclusion