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Abstract. Theoretical work on transforming the Navier-Stokes equations into arbitrarily 

accelerating frames has included the continuity, momentum, and energy conservation 

equations. An analysis of the momentum equation in non-dimensional terms leads to an 

acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A 

selection of cases for rectilinear acceleration has been chosen to illustrate the point that this 

parameter alone does not govern regimes of flow about significantly accelerating bodies, and 

reference must be made, above all, to the Mach number for transonic effects. Other parameters 

from the literature on impulsive start-up in wind tunnels are also shown to be useful in 
delimiting regimes of flow, such as the Freymuth start-up time. Two dominant effects in fluid 

dynamics with accelerating objects are shown to be flow history, a term being used to cover the 

difference between an instantaneous flow field with an accelerating body and the flow field 

about the same body at steady state, and the dependence of stagnation pressure on acceleration. 

The dependence of these effects on dimensionless parameters is explored. 

1. Introduction

Increased agility is a topic of growing importance in aeronautics. In the design of aircraft, missiles,

and Unmanned Aerial Systems, growing emphasis is being placed on the ability to out-manoeuvre

another vehicle. Current missiles are launched under an acceleration of about 200 g, where g is the

acceleration due to gravity, and may turn at 100 g. Earlier missiles have been ground-launched at 400

g. Accurate prediction of the transient loads using Computational Fluid Dynamics (CFD) is being

explored, and in addition, methods of distinguishing regimes in which the aerodynamic effects of

acceleration are significant are required in order to guide conceptual design.

Earlier reports and papers have provided theoretical support in the form of transformation of the 

Navier-Stokes equations between inertial and non-inertial frames [1,2,3,4] for arbitrary acceleration. A 

source term appears in the momentum equation in the non-inertial frame for linear acceleration. The 

magnitude of the linear acceleration term may be compared to that of the convection term, and 

provides a coefficient 𝑄; a description is provided below. We term 𝑄 the acceleration parameter. In 
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addition, some guidance on low acceleration effects is available from experimental work on transient 

effects in the start-up of wind tunnels, and this work provides the Freymuth start-up time 𝑡𝐹 = √𝐿/𝑎
[5]. These parameters are confined to a linear comparison of acceleration effects with convective 

phenomena.  

In compressible flow with speed 𝑣(𝑡) and sound speed c, the Mach number, 𝑀(𝑡) = 𝑣(𝑡)/𝑐, is of 

dominant importance. For the present applications, constant acceleration along the axis of the flare 

body, shown in figure 1, from M = 0.1 to M = 1.0 is modelled. A uniform acceleration of 𝑀̇ = 3 s
-1 

or 

𝑎0 = 𝑣̇(𝑡)~ 1041 ms
-2

, is modelled. Work in this paper is intended to contribute to understanding

regimes of accelerating aerodynamics using 𝑄, 𝑡𝐹 and the Mach number.

Figure 1.  Flare geometry. Dimensions are in mm. 

Dimensionless parameters only compare terms in the governing equations and do not describe the 

complicated non-linear behaviour of compressible fluids. The term flow history was introduced by 

Bassett [6] in connection with boundary layer development. Lilley showed flow history in 

compressible fluids using the Mach lines of a single particle [7]. After this paper, very little work was 

done analytically, and experiments have been very difficult to set up. For shapes of real interest it is 

necessary to explore the relevant flow fields with CFD. Roohani and Skews [8,9,10] have modelled 

objects of various shapes with CFD and provided evidence of flow history and inertial effects. Flow 

history can be visualised in terms of a lag between the current flow field and earlier flow fields. In 

other words, the current flow field reflects some of the unresolved features of earlier flow fields.  

In this paper, the results of CFD calculation of drag forces on a slender body of rotation are 

discussed in order to explore regimes in which acceleration effects are easily categorised with flow 

parameters. The flare configuration has been explored by Forsberg et al. [3] and it was shown that for 

the specific case investigated, unsteady drag dropped in comparison with steady results through the 

transonic region. In work on aerofoils, shocks appear on curved surfaces in the transonic regime or as 

detached bow shocks at M > 1. The flare, by contrast, has a conical nose, on which attached oblique 

shocks should develop, and has expansion and compression corners at the nose and tail flare. 

2. Theory

In an inertial frame Σ, the Navier-Stokes equations are the conservation laws for mass, momentum and

energy. Transformation of mass and momentum conservation equations to an arbitrarily moving non-

inertial frame Σ′ is given by Forsberg [2]. For linear acceleration 𝑎0 of the origin O′of Σ′ relative to

the origin O of Σ, an acceleration source term appears in frame Σ′. The equation is normalized to

typical parameters, so that the coefficient of the convective term is 1. The coefficient of the time

derivative term becomes the Strouhal number, 𝑆𝑡 =
𝑣0𝑡0

𝐿
. The coefficient of the acceleration term is the 

acceleration parameter 𝑄 =
𝐿𝑎0

𝑣0
2  where L is a typical length and 𝑣0is a typical velocity; this parameter

provides a linear estimate of the importance of acceleration-related effects in comparison to convective 
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flow. Inclusion of gravity 𝒈 as an external force in  Σ leads to an analogous term characterized by the 

Froude number, 𝐹𝑟 =
𝑣0

√𝐿𝑔
. The parameter 𝑄is related to 𝐹𝑟−2.

Typical length L is defined as the length of the flare and is shown with other parameters in Table 1. 

The pressure and temperature used were 101325 Pa and 300 K respectively.  The Freymuth start-up 

time is an estimate of the time taken to traverse length L at acceleration 𝑎0, starting from rest. It has

been used as a normalising factor in examining the transient vorticity developing over aerofoils in 

wind-tunnel start-up studies, with 𝑎0 referring to the flow acceleration. While this case is not

equivalent to the acceleration of an object from rest, an object accelerating from rest in still air would 

take of the order of the Freymuth time to travel its own length L, and the factor may therefore be taken 

to be an indicator of the minimum time during which start-up transients may be expected. The 

Freymuth time indicates that start-up transients over this flare may be expected to last for 0.03 s, or 

when 𝑀~0.23 in the present flare case.  

Table 1. Typical parameters 

Parameter Value 

Typical length 𝐿 

Sound speed c 

652.3 mm 

347 ms
-1 

Initial Mach number 𝑀0 0.10 

Typical Mach number 𝑀 1 

Typical acceleration 𝑎0 1041 ms
-2

 

Acceleration parameter 𝑄 =
𝐿𝑎0

𝑣0
2

0.26 

Freymuth start-up time √𝐿/𝑎0
0.03 s 

It is noted that at the slender conical nose with an attached oblique shock, stagnation properties are 

an approximation to surface pressures that are likely to be modelled.  

3. Methodology

The model geometry is shown in figure 1. The primary interest of this model is in examining shocks,

surface pressures and drag, and it is reasonable to use an axisymmetric approximation which will

eliminate asymmetric vortex shedding in the wake.
The acceleration terms for the momentum and energy were provided as source terms in the non-

inertial frame Σ′ through user coding in a finite-volume cell-centred unstructured code ANSYS
®

Fluent. A second-order upwind scheme was used for shock capture. A two-dimensional hybrid 

quadrilateral-triangular unstructured grid, with adaptive mesh refinement, was used, and local 

Reynolds numbers y
+
 were checked at the wall for compatibility with the  Spalart-Allmaras turbulence 

scheme, which was chosen as a well-validated model in the transonic regime. The far field boundaries 

receive relative velocities that increase with the acceleration a, while the walls are no-slip walls with 

velocity zero relative to the body. Mesh independence was established to a level of 5% variation in 

loads between successive grids. A time step of 10
-4

 s was found to be small enough to capture the 

same loads and flow fields as time steps less than 10
-4

 s. A grid convergence study was performed on 

the global mesh size before checking results for pressure along the missile wall with adaptive gridding 

on the steady state solutions. Grid adaption was performed every 10 time steps in the transient 

solutions. Verification of the source terms was performed by inspecting the evolution of the pressure 

field across the domain. 
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4. Results

Drag is not normalized in acceleration cases, but presented in Newtons.

(a) (b) (c) 

Figure 2. Drag and drag difference as a function of Mach number 

Figure 3. Pressure profiles for M=0.7 as a function of distance from the nose over (a) the length of the 

flare and (b) the stagnation region 

Figure 4. Drag in the subsonic region for increased calibre geometries 
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Steady State Constant Acceleration 

(a) M = 0.7 (b) M = 0.7

(c) M = 0.94 (d) M = 0.94

(e) M = 1.00 (f) M = 1.00

Figure 5. Instantaneous density flow fields. Left: steady state. Right: constant acceleration 

5. Discussion of results

Figure 2 compares steady and unsteady drag at Mach numbers in the subsonic and transonic range. It

is clear that for this particular geometry drag is usually lower in the unsteady case during acceleration.

However, in previous work by Roohani and Skews [8,9,10] the opposite effect was observed in

aerofoils and bluff bodies. This is because unsteady drag is not only a function of Mach number and

acceleration, but it is also affected by the geometry of an object. In Figure 4 this phenomenon is

illustrated by increasing the diameter of the flare by 20 mm and 40 mm and subjecting it to the same

steady and unsteady conditions. It is shown that when the diameter is increased by 40 mm,

acceleration results in an increase in drag compared to the steady state scenario. In figure 3 the

pressure profile at Mach 0.7 as a function of distance from the nose shows that in the frontal area of

the flare the pressure has increased due to acceleration. This is due to fluid inertia. At the tail flare the

pressure is lower during acceleration, which can be attributed to flow history and boundary layer

effects. At the flat base surface the minimum pressure during acceleration (84.5 kPa) is higher than the
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minimum steady state pressure (83.4 kPa). Both these effects contribute to the lower drag observed 

during acceleration. Contours of density are shown in figure 5, where the steady state and the 

accelerating cases are compared at specific Mach numbers. At Mach 0.94 a recovery shock has 

developed in the wake of the flare in both cases. There appears to be a shock developing behind the 

expansion corner on the nose cone, which could be attributed to a separation bubble. This needs more 

detailed investigation as it appears to be a function of acceleration. In addition, the wake shock has 

strengthened in both cases, but extends a smaller distance from the centerline in the accelerating case. 

The decreased wave drag accounts for the sharp drop in drag for the accelerating case in the transonic 

region, shown in the data of figure 2(c).    

The Freymuth time, which is a measure of the time in which start-up transients would be expected, 

is 0.03 s in this case, and the total trajectory is covered in 0.3 s. The start-up transients were not 

observed to be significant under these circumstances. 

6. Conclusions

It has been shown that for a slender body of rotation, drag under acceleration of 1041m/s
2 

from M =

0.1 is lower than drag in steady flow across the subsonic region, and that there is a significant decrease

in unsteady drag near Mach 1. This is in contrast with previous work on aerofoils and bluff bodies. It

is also shown that increasing the diameter of the slender body reverses the trend, so that drag under

acceleration in the subsonic region is larger than steady drag. The decrease in drag is attributed to the

effects of flow history over the rear of the flare body, including a decrease in wave drag as the wake

shock is reduced in extent during acceleration. In these cases, flow history dominates flow inertia.

However, as the diameter of the flare body is increased, flow inertia effects on the nose cone increase

and dominate flow history effects, and the total drag rises above that of the steady state.

In this case, the Mach number is a clear indicator of changing compressible effects near Mach 1, 

where drag changes are very significant. The acceleration parameter Q is 0.26 based on the initial 

velocity, and very significant acceleration effects have been observed. This factor should be explored 

further in future work as an indicator of the relative significance of acceleration in understanding flow 

fields and aerodynamic loads.  
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