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Abstract. The objective of this work is to analyse and quantify modelling errors introduced
by simplifications made in the deterministic calculational path as applied to nuclear reactor sim-
ulation. These simplifications are introduced in order to make a model practically solvable with
a diffusion code, and they are classified as follows: spatial homogenization, energy (spectral)
condensation, diffusion approximation and environmental dependency. In this work, a two-node
model consisting of a SAFARI-1 reactor fuel assembly next to a water node is modelled because
it is a typically encountered configuration and fairly sensitive to spatial and spectral approx-
imations. The analysis and quantification of modelling errors introduced in the calculational
path were performed. Errors introduced by the four approximations in the calculational path are
quantified by investigating the effective multiplication factor (k-eff) as well as calculational time
as an integral measure of difference between two models. All calculations were performed with
the neutron transport codes NEWT, the Monte Carlo Serpent and the diffusion code MGRAC.
The results indicate that for the fuel-water model, environmental dependency and the diffusion
approximation are the largest contributors to the total calculational error.
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1. Introduction
For the development of computer codes that accurately predict the flux distribution in nuclear
reactors, modelling error analysis is necessary. The majority of publications on the modelling
error analysis [3][4][5] focused on power reactors. Not much work has been published on
modelling error analysis for research reactor (such as material testing reactors (MTRs))
simulation. This work forms part of a bigger study focused on improving the errors made
in modelling MTRs. As a first step in this larger study, modelling error analysis is done on a
2-node problem. In future work, the approach defined will be applied to a full-core MTR model.
This paper is arranged as follows: Section 2 discusses the theoretical background and
calculational path. Section 3 provides a layout of the research methodology and the codes
used. Section 4 discusses the results and the final section discusses concluding remarks for this
work.
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2. Theoretical background and calculational path
In order to predict neutron flux distribution in the reactor core, neutronics modelling of the
reactor is performed by solving the neutron transport equation. The neutron transport equation
describes the motion and interaction of neutrons with nuclei in a nuclear reactor [2] and is given
by:

1

ν

∂φ

∂t
(r̄, Ω̂, E, t) + Ω̂ · ∇̄φ(r̄, Ω̂, E, t) + Σtφ(r̄, Ω̂, E, t)

=

∫
4π
dΩ̂′

∫ ∞
0

dE′Σs(Ω̂
′ → Ω̂, E′ → E)φ(r̄, Ω̂′, E′, t) + s(r̄, Ω̂, E, t). (1)

Equation (1) has 7 independent variables, position r̄(x, y, z), angular Ω(θ, φ), energy (E) and

time (t) variables. The dependent variable is the angular neutron flux φ(r̄, Ω̂, E, t). All terms
on the left hand side of the equal sign are neutron loss terms and terms on the right hand
side are neutron gain terms. Σt and Σs are total and scattering macroscopic cross-sections
of the system being modelled, and they are measured in cm−1. The source term s(r̄, Ω̂, E, t)
includes external neutron sources and neutrons from fission, and is thus dependent on the neutron
flux. Typically, for day-to-day reactor calculations, a deterministic approach is used to solve
this equation because of its computational efficiency compared to other approaches such as
the stochastic approach. The deterministic approach involves discretizing the variables of the
neutron transport equation to a set of discrete equations that are numerically solvable [2] and
is applied to reactor analysis calculations via a two step process.
A reactor core is discretized into nodes (assemblies). In the 2-step deterministic approach; the
first step, a 2D steady state transport calculation is performed for each detailed assembly (node)
type. The transport solution is used to produce energy collapsed, and spatially homogenized
assembly parameters. During the homogenization and energy group condensation process the
node-averaged parameters are conserved. The energy collapsed and homogenized parameters will
be used in the second step by the full core diffusion solver. The homogenized group-collapsed
parameters are generated in an approximated environment instead of the true physical conditions
of the assembly in the reactor or full-core calculation. The four simplifications introduced in the
deterministic calculational path are discussed in more detail in the following three subsections.

2.1. Energy group condensation and spatial homogenization
The simplifications made in the energy and geometric representation in the node involve
performing a fine-group (100s) heterogeneous transport calculation. The transport solution
(group heterogeneous neutron flux) is used to collapse the number of energy groups to few-group
(less than 10) and homogenize the geometry over the node so that, each node has a constant set
of few-group homogenized parameters that preserve the transport solution in an average sense.
For few-group homogenized node to be equivalent to the fine-group heterogeneous node, the
node-averaged reaction rates and surface transport leakages must be preserved. Therefore, for
the homogeneous model to preserve the same average parameters calculated by heterogeneous
model, the homogeneous cross-sections (Σ̃i

α,g) per group (where α is the type of nuclear reaction)
must satisfy the following condition.∫

Vi

∫ Eg−1

Eg

Σ̃i
α,g(r̄, E)φ̃(r̄, E)dr̄dE =

∫
Vi

∫ Eg−1

Eg

Σi
α,g(r̄, E)φ(r̄, E)dr̄dE. (2)

However, because we do not have the few-group homogeneous flux (φ̃) to accurately
preserve heterogeneous solution, the few-group homogeneous cross-sections are calculated with
approximated neutron flux before being used in the diffusion full core calculation, and this
contributes to the spectral and spatial homogenization errors.
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2.2. The diffusion approximation
The diffusion equation is a simplified form of the neutron transport equation. The main
simplification of the diffusion theory is that, it eliminates the need to solve for angular flux
as in most transport approximations. The derivation of the diffusion equation uses various
approximations, one of them being Fick’s law (Equation 3 which relates neutron current (J̄) to
neutron flux (φ) [2].

J̄(r̄, t) = −D(r̄)∇̄φ(r̄, t). (3)

1

ν

∂φ

∂t
− ∇̄ ·D(r̄)∇̄φ+ Σa(r̄)φ(r̄, t) = S(r̄, t). (4)

Equation (4) is the single group diffusion equation, and is valid when: there is an isotropic
neutron source and scattering, angular flux distribution is linearly anisotropic and current
density varies slowly with time. Here, D is called diffusion coefficient, and S is the source
term. In both Equations (3 and 4) the energy variable has been suppressed for clarity.

2.3. Environmental dependency
Macroscopic cross-sections are generated in an environment that is not an exact match to the
environment where the assembly will be used in the core calculation. For example, fuel cross-
sections are typically generated in an infinite fuel environment (i.e. a fuel element with reflective
boundary conditions), but in a reactor core, fuel elements are surrounded by fuel of, potentially
different burn-up history and composition or even non-fuel elements (such as control rods or
reflectors). By using cross-sections from an infinite environment for the fuel elements in a
different core environment (i.e using approximate boundary conditions), an environmental error
is introduced in the model. Not only fuel cross-sections suffer from environmental errors but also
other cross-sections (control rods, reflectors, moderator, etc.) may suffer the same environmental
errors.
The spectral, homogenization, and diffusion approximation errors are typically addressed by
using equivalence theory (ET). ET is able to mitigate these errors by reproducing the node-
integrated properties (reaction rates and leakage rates) of the known heterogeneous solution
by introducing discontinuity factors in the homogenization procedure [3]. However, ET cannot
address environmental error.

3. Methodology
The four simplifications introduced in the deterministic calculational path are investigated for a
2-node model consisting of fuel assembly next to a water node as shown in Figure 1. Reflective
boundary conditions were applied to all outer sides.

Figure 1. Heterogeneous 2-node model.
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Three codes were used in this work, namely NEWT, MGRAC and Serpent. NEWT is part of
the SCALE code system, MGRAC is part of the OSCAR-4 code system, and Serpent is a Monte
Carlo code system. NEWT (NEW Transport code) is a 2D discrete ordinate transport code [8].
MGRAC (Multi-group Reactor Analysis Code) is a 3D nodal diffusion code [1][6] and Serpent
uses Monte Carlo stochastic approach to reactor modelling [9].

Figure 2. Flow diagram of breakdown of errors in the calculational path.

The first three simplifications can be quantified in a step-wise procedure as described in Figure

2. The NEWT and MGRAC codes are used in this part of the study. In Figure 2, calculation 1
is the reference transport calculation with a fine-group (238 groups) cross-section library and

heterogeneous geometry. Calculation 5 is the few-group homogenized diffusion calculation
after all simplifications have been made to the model. The errors induced by condensation,
homogenization, and the diffusion approximation are determined by comparing the results of
the five calculations marked in Figure 2. Table 1 is a summary of the breakdown of errors
introduced in the calculational path. Only NEWT and MGRAC were used for this part of the
study.

Table 1. Breakdown of error in calculational path

Compare
calculations

Quantity to investigate

1 and 2 Spectral error
1 and 3 Homogenization error
2 and 4 Homogenization error in few-group
4 and 5 Diffusion approximation error in few-group
1 and 5 Total simplification error in calculational path

To investigate environmental error, the Serpent code was used to generate fuel and water cross-
sections in the correct environment (fuel next to water) and continuous in energy (from which the
reference k-eff is taken) and also to generate fuel cross-sections in the approximated environment
(infinite fuel environment). The cross-sections generated by Serpent were used in MGRAC
diffusion solver to calculate the k-eff in few-group (6 groups). Two MGRAC calculations were
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set up; one with no environmental error (fuel and water cross-sections from 2-node Serpent,
exact same environment) and one with environmental error where the cross sections were taken
from an infinite fuel calculation in Serpent and placed in the 2-node model in the MGRAC. The
comparison was made between k-eff calculated in the correct environment and k-eff calculated
in the approximate environment for 6 groups. Serpent was used here because the functionality
exists to generate nodal equivalence parameters for MGRAC (including discontinuity factors)
from the Serpent calculation, but not from SCALE calculation. The generated equivalence
parameters were used to resolve the first three errors and only the environmental error need to
be studied further and corrected.

4. Results and discussion
The k-eff is a measure of the reactivity of a model and serves as an integral parameter to describe
a model. The error will be described as the difference in k-eff (∆k) is measured in pcm (per
cent mille) and calculated as: ∆k = k1−k2

k1×k2 × 105 where ∆k > 500pcm is considered large.
The heterogenous transport calculation in 238 energy groups yields the reference reactivity k-eff
= 1.17073 in 4118 seconds.

Table 2. Breakdown of errors introduced by simplifications in the 2-node problem

2-groups 4-groups 6-groups 238-groups

Spectral error (pcm) 3267 819 63 N.A
Homogen. error (pcm) -214 -141 -81 -22
Diffusion error (pcm) -6525 -5084 -4094 N.A
Total error (pcm) -3472 -4406 -4113 N.A

Table 3. Calculational time

2-groups 4-groups 6-groups 238-groups

Spectral (second) 37 50 60 4118
Homogen.(second) 8 9 17 1313

Table 3 shows the time each calculation took to complete. In Table 2, the spectral error
introduced by energy group condensation increases as the number of groups decreases. The
reactivity increases with energy group collapsing because physical processes (nuclear reactions)
are under represented in the group structures.
Homogenization induces somewhat smaller errors compared to the larger spectral errors
observed. Unlike energy condensation, homogenization reduces reactivity, and this error
increases as the number of groups decreases. It can be observed that, the 2-group case gives the
largest error in reactivity of 214 pcm.
A large error in reactivity is introduced when using a diffusion solver instead of a transport
solver. The 6-groups case, yields a reactivity of 4000 pcm lower than the transport calculation.
The error increases to just above 6000 pcm as the energy groups are further collapsed. All three
simplifictions reduce the calculational time significantly when applied to a 2-node problem.
In Table 4, environmental error was investigated in 6-groups only. Notice that the continuous
energy, heterogeneous Serpent calculation and the 6-group homogenized diffusion calculation are
equivalent (within some statistical margin) because ET was used in the cross-section generation.
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Table 4. Environmental dependency effect in 6 energy groups

Codes keffcorrect env. keffApprox. env. ∆k (pcm)

Serpent 1.17050 - N.A
MGRAC 1.17047 1.16051 733

This shows that ET can mitigate the error of the first 3 simplifications if the cross-sections are
used in the exact same environment as that in which they were generated. We see that even
though an error of about 4000 pcm has been negated by the use of ET, we are left with an
environmental error of 733 pcm.

5. Conclusion
All four simplifications introduced in the deterministic calculational path were investigated for a
two node fuel-water problem. From the results presented above, it can be seen that the diffusion
approximation and environmental dependency are major contributors to the total error in the
deterministic calculational path for a fuel-water model. However, the first 3 simplifications are
mitigated through the use of equivalence theory by introducing equivalent nodal parameters
to preserve not only node-averaged reaction rates but also the node-leakages. The equivalence
theory only addresses the first 3 errors and not the environmental, therefore, the environmental
error mitigation is still an area of active research. The findings can be used to develop models
that can address environmental and diffusion approximation errors. Future work will look at
modelling error analysis and quantification for other configurations (fuel-absorber, fuel-reflector,
etc.) found in SAFARI-1 and go to the full core calculations.
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