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Abstract. Collective electronic excitations in the system of interacting conduction electrons of 

ferromagnetic metals (Fe, Co, Ni) are investigated. These conduction electrons stem from 

relatively narrow d-type bands and a suitable model to describe them is the Hubbard model.  The 

tensor of the magnetic susceptibility is calculated within the Hubbard model. While the poles of 

the diagonal contribution represent the famous Stoner criterion for the stability of magnetic order 

the transverse susceptibility yields spin wave energies representing magnons. Magnetizations 𝑚 

as a function of temperature 𝑇 and occupation number 𝑛, Curie temperatures 𝑇𝐶 , and the 

temperature dependent exchange splitting 𝛥 𝐸𝑒𝑥 are numerically evaluated within reasonable 

agreement with experimental results. 

1.  Introduction 

In ferromagnetic transition metals, e.g. Fe, Co, Ni both magnetism and the electric current are caused 

by the same electron group which stem from relatively narrow d-type conduction bands. Band 

ferromagnetism is a consequence of strong electron correlations where the correlation energy is the 

deviation of the exact ground state energy of the interacting electron system from the corresponding 

Hartree-Fock result and can only be approximately determined. Furthermore, correlation effects are not 

properly taken into account by standard band theory so that a full microscopic explanation of band 

ferromagnetism is still not available yet. 

 

Even though density functional theory DFT is in principle an exact ground state theory its local 

density approximation LDA seems to underestimate electron correlation effects. The exchange splitting 

𝛥 𝐸𝑒𝑥  (𝑇 = 0 𝐾)  for example  comes out far bigger than in the experiment. Also short range magnetic 

order in the paramagnetic phase is not reproduced in LDA in contrast to experimental results (e.g. Curie-

Weiss law). The main shortcoming of LDA is its restriction to 𝑇 = 0 𝐾. These difficulties could in 

principle be overcome by extending DFT to finite temperatures. An alternative strategy uses model 

Hamiltonians that are then approximately evaluated using many body techniques. A suitable model for 

band magnetism is the Hubbard model that is introduced in the following section. Collective electronic 

excitations in the interacting electron system are then investigated. One distinguishes between charge 

density waves (plasmons) and spin density waves (magnons). In this paper we concentrate on the latter 

which results in Section 3 into expressions for spin wave energies and the exchange splitting.                                                                 

 

 The exchange splitting is temperature dependent which is further investigated in Section 4 using a 

many body approach. From equations for the particle numbers 𝑛↑ , 𝑛↓ results for the magnetization 

𝑚 (𝑇, 𝑛) and the Curie temperature 𝑇𝐶  (𝑛) are derived. The results are compared with those of other 

methods. 
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2.  The Model 

Starting point for a theoretical description of ferromagnetic metals is the tight binding approximation 

which implies that both hopping integrals and Coulomb matrix elements are calculated from atomic 

wavefunctions. In the Hubbard approximation [1] only the dominant intraatomic matrix element is 

retained yielding the model Hamiltonian 

𝐻 =  ∑ (𝑇𝑖𝑗 −  µ   𝛿𝑖𝑗)  𝑎𝑖𝜎
+   𝑎𝑗𝜎  𝑖𝑗𝜎  +  

1

2
 𝑈 ∑ 𝑛𝑖𝜎    𝑛𝑖,−𝜎𝑖𝜎                                                              (1) 

Here 𝑎𝑖𝜎
+  denotes the creation operator for a 𝜎-electron at lattice site 𝑅𝑖; 𝑎𝑖𝜎 is the corresponding 

annihilation operator. 𝑈 is the intraatomic Coulomb matrix element mentioned above while the 𝑇𝑖𝑗 

describe hopping integrals. Note that in the tight binding approximation the indices 𝑖, 𝑗 are restricted to 

nearest neighbors only.                                                                                                   

µ  denotes the chemical potential that is both 𝑇  and 𝑛-dependent. The temperature dependence 

follows from a statistical description of the thermodynamic properties of an ideal Fermi gas, i.e. 

µ (𝑇)   ≅    𝜀𝐹    (1 −   
𝜋2

12
   (

𝑘𝐵  𝑇

𝜀𝐹
)

2
)                                                                                            (2) 

Note that  for simple metals, e.g. 𝑁𝑎, 𝐶𝑢, 𝐴𝑢, etc at room temperature the ratio 
𝑘𝐵 𝑇

𝜀𝐹
   ~   5  ∙    10−3                

So, the temperature dependence of µ becomes practically negligible. On the other hand, the 𝑛-

dependence of µ is at low temperatures reasonably  well described by the Stoner result        

µ ( 𝑇 = 0)  =  𝜀𝐹 +  
1

2
 𝑈 𝑛                                                                                                                  (3) 

As a first approximation one may regard the 𝑑-band degeneracy as not particularly decisive and limit 

the calculation to narrow 𝑠-bands.  The Coulomb interaction then obviously only acts if both electrons 

occupy the same Wigner-Seitz cell; these two electrons must then have opposite spins. The Hubbard 

model is thus the simplest model to describe both electronic and magnetic properties of the transition 

metals. It explains ferromagnetism on the basis of a spin-dependent band shift between the ↑ and ↓-

density of states below the Curie temperature 𝑇𝐶 [2].  This is further investigated in Fig 1 that 

schematically depicts the density of states for both ↑ and ↓-electrons according to the Stoner model. 

 
 

Fig 1: Schematic plot of the spin-dependent density of states 𝜌↑ and 𝜌↓ for a ferromagnetic metal 

according to the Stoner model. The figure is adopted from reference [3].                                                                 

 

The bands are rigidly shifted against each other by an energy amount of 𝛥𝐸 = 𝑈 𝑚; it will later be 

shown that 𝛥𝐸 defines the exchange splitting. The exchange splitting is temperature dependent and 

vanishes above 𝑇𝐶; this temperature dependence is further investigated in the next section. Furthermore, 

as both spin bands are filled up to the Fermi level 𝜀𝐹 it follows 𝑛↑  >  𝑛↓ and thus a spontaneous 

magnetization 𝑚 =  𝑛↑ −  𝑛↓ > 0 is observed.  Despite its simplicity the Hubbard model remains a non-

trivial many body problem and is in general not exactly solvable. Approximate solutions confirm a 

possible collective magnetic order under certain conditions for the external parameters, i.e. Coulomb 

coupling 𝑈 𝑊⁄   where 𝑊 denotes the band width, the lattice structure, and the band occupation 𝑛. M 
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Ulmke  [4] numerically proved magnetic order within the model at finite temperatures in an extended 

parameter region using Quantum Monte Carlo calculations. W Nolting [5] points out that a correct 

inclusion of Fermi liquid properties is essential to obtain ferromagnetic solutions within the Hubbard 

model. The effect of electron correlations on the stability of magnetic order in the Hubbard model is 

also discussed in reference [6] where it is found that ferromagnetic order is generally suppressed by 

correlation effects. On the other hand, the Hartree-Fock approximation does not include the correlation 

energy and thus overestimates the strength of the ferromagnetic order. 

 

Other interesting solutions discussed so far in the literature include 

-The Mermin-Wagner theorem rules out ferromagnetic order at finite temperatures for dimensions                                                                

𝑑 ≤ 2 [7]. 

-For small band occupations n only a paramagnetic solution 

𝑛↑ =  𝑛↓ =  
1

2
 𝑛 

is observed. This agrees with the exact result of Kanamori [8]. 

-In the strong coupling limit 𝑈 ≫ 𝑊 a saturated ferromagnetic solution is expected for large band       

occupations 𝑛 in agreement with the results of Nagaoka [9,10]. 

-In the zero bandwidth limit where 𝑇𝑖𝑗   →  𝑇0   𝛿𝑖𝑗 no ferromagnetic solutions are observed [11], the 

conventional explanation being that quasiparticle damping prevents any spontaneous magnetic order. 

Current  techniques used to improve the understanding of the microscopic origin of ferromagnetism in 

metals include the development of new mathematical methods, e.g. dynamic mean field theory or 

density matrix renormalizations [12,13] or alternatively new ab initio schemes [14]. Recent 

investigations deal with a possible linkage between magnetic order and structural phase transitions in 

Fe, Co, Ni [15]. The authors of ref [15] report a pressure induced suppression of magnetic order in Fe 

where the magnetic phase transition is accompanied by a structural phase transition from bcc ↔ hcp. 

The stability of the bcc-phase is due to the ferromagnetic order. Besides its application to band 

magnetism the Hubbard model is also successfully applied to describe metal insulator transitions and 

high temperature superconductivity [16, 17]. 

 

3.  Spin Density Waves 

Besides charge density waves another form of collective excitations in ferromagnetic metals is caused 

by the existence of the electron spin.  The tensor of the magnetic susceptibility is determined from the 

Green functions involving the components of the spin operator 𝑆𝑖. The diagonal or longitudinal 

contribution 𝑋𝑞
𝑧𝑧  (𝐸) yields information regarding the stability of the magnetic order. Within the 

Hubbard model it has the form 

𝑋𝑞
𝑧𝑧 (𝐸) =  − 

µ0  µ𝐵
2

ℏ 𝑁𝑉
     

𝑋0  (𝑞,𝐸)

1− 
𝑈

2𝑁ℏ
  𝑋0 (𝑞,𝐸)

                                                                                                (4)                                                                                                 

Here                                                                                                                                                                                            

𝑋0 (𝑞, 𝐸) = 2𝑁 ℏ  𝜌0 (𝜀𝐹 )                                                                                                                (5)   

denotes the temperature independent Pauli spin susceptibility;  𝜌 ( 𝜀𝐹 )  is the density of states at the  

Fermi level. Inserting Eq (5) into (4) yields 

𝑋𝑞
𝑧𝑧 (𝐸) =  − 

µ0  µ𝐵
2

2 𝑉
     

𝜌0 ( 𝜀𝐹 )

1−𝑈 𝜌0 ( 𝜀𝐹 )
                                                                                                      (6) 

The poles of the susceptibility represent the famous Stoner criterion 

𝑈   𝜌0  (  𝜀𝐹 )    ≥ 1                                                                                                                              (7) 

regarding the stability of magnetic order. According to Eq (7)  ferromagnetic order becomes 

energetically favourable if there is, firstly a large intraatomic Coulomb interaction 𝑈 as this maximizes 

the gain in potential energy and secondly a large density of states at the Fermi level. In that case a lot of 

↓-electrons can flip their spin and become ↑-electrons without increasing the kinetic energy of the system 

too much. 
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On the other hand, the transverse susceptibility 𝑋𝑞
+−  (𝐸) is computed within the Stoner model as 

𝑋𝑞
+− (𝐸)  =   

𝛾

𝑁
   ∑

〈𝑛𝑘+𝑞,↓〉  − 〈𝑛𝑘↑〉

𝐸− 𝛥𝐸↑↓ (𝑘,𝑞)𝑘                                                                                                          (8) 

The poles are identical to the spin flip excitation energies 

𝛥𝐸↑↓  (𝑘, 𝑞) =  𝜀( 𝑘 + 𝑞) −  𝜀 (𝑘) +  𝑈 𝑚                                                                                            (9) 

describing transitions between the two spin bands 𝐸𝜎  (𝑘). In the case of the Stoner model the 

quasiparticle energies 𝐸𝜎  (𝑘) are plotted as a function of wavevector 𝑘 in Figure 2 below. 

 
 

Figure 2: Quasiparticle energies 𝐸𝜎  (𝑘) as a function of wavevector 𝑘 according to the Stoner model. 

Depicted is the most general case 𝑈 ≠ 0, 𝑚 ≠ 0. The figure is adopted from reference [3]. 

 

Particularly interesting is the case 𝑈 ≠ 0, 𝑚 ≠ 0  where the rigid energy difference between the two 

bands defines the exchange splitting 

𝛥𝐸𝑒𝑥  =  𝐸↓ −  𝐸↑  =  𝑈 𝑚                                                                                                                                   (10) 

Note that the exchange splitting is temperature dependent. The 𝑇 = 0-value can be used to estimate the 

Curie temperature 𝑇𝐶 of the metal The parameter 𝑈 is first fixed via the exchange splitting and the 

corresponding value is then inserted into the result from the strong coupling limit 𝑈 ≫ 𝑊, i.e. 

𝑘𝐵  𝑇𝐶    ≅   
1

4
  𝑈                                                                                                                                 (11) 

The theoretically calculated values appear in the fifth column of Table 1 below and are compared with 

experimental values from the literature. Table 1 shows that our simple model calculation yields 

surprisingly accurate results for the Curie temperature 𝑇𝐶 especially in the case of Ni and Co. Only for 

Fe the value for the Curie temperature is slightly overestimated due to the large exchange splitting at 

𝑇 = 0 𝐾. However, the proportionality 𝛥 𝐸𝑒𝑥  ~ 𝑚 is not confirmed by experimental results. 

 

metal 𝑚(𝑇 = 0) 𝛥 𝐸𝑒𝑥   (𝑇 = 0) 𝑇𝐶    (exp. result) 𝑇𝐶 (theoret. 

result) 

Fe 2.22 µ𝐵          2 eV          1043 K 1320 K 

Ni 0.56 µ𝐵          0.35 eV          631 K 780K 

Co 1.7 µ𝐵          1.5 eV          1388 K 1280K 

 

Table 1: Experimental and theoretical values for magnetic properties of ferromagnetic metals 

 

The Stoner model additionally suggests that the exchange splitting vanishes in the paramagnetic phase 

𝑇 >  𝑇𝐶. Especially in the case of Fe a persistent exchange splitting above 𝑇𝐶 has been experimentally 

observed.  The Stoner model also predicts a Pauli like susceptibility 𝑋 (𝑇) = 𝑐𝑜𝑛𝑠𝑡 in the paramagnetic 

phase with no indication of a Curie-Weiss behaviour again in contradiction to experimental evidence. 

One reason for the deficiencies of the Stoner model at finite temperatures is its suppression of spin 

waves. Spin waves in ferromagnetic metals are experimentally detected by inelastic neutron scattering. 

Expected is therefore at low temperatures 𝑇 → 0𝐾 a deviation of the magnetization from saturation of 

the form 
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𝑚 (𝑇)

𝑚0
  ~  1 − 𝐶 𝑇2                                                                                                                              (12) 

Eq (12) is, however, not reproduced by the Stoner model. 

 

4.  Results 

Using the thermodynamic properties of an ideal Fermi gas the particle numbers 𝑛↑ and 𝑛↓ are calculated 

from the quasiparticle density of states 𝜌𝜎  (𝐸), i.e. 

𝑛𝜎  =   
𝑁𝜎

𝑁
   =   ∫ 𝑑𝐸    𝑓− (𝐸, 𝑇)    𝜌𝜎   (𝐸)

+ ∞

− ∞
  

Here 

𝑓−  (𝐸, 𝑇) =    
1

𝑒𝛽( 𝐸− µ)+1
  

denotes the Fermi function. As 𝑁↑ + 𝑁↓ = 𝑁 it follows  𝑛↑ + 𝑛↓ = 1. The magnetization is then defined 

as 

𝑚 =  𝑛↑ −  𝑛↓ 

and is plotted in Figure 3  below as a function of 𝑘𝐵 𝑇 with 𝑛 = 𝑐𝑜𝑛𝑠𝑡.  Note that in the Stoner model 

Eq (11) applies. Figure 3 shows the typical Brillouin function behaviour for the magnetization 𝑚 (𝑇) 

which shows that qualitatively the Stoner model describes the phase transition ferromagnetism ↔ 

paramagnetism reasonably well. The small kink in the magnetization curve close to 𝑇𝐶 could be due to 

the fact that the particle dependence of the chemical potential according to Eq (3) is strictly only valid 

at small temperatures. Interesting is also the question in which region of 𝑛-values ferromagnetic 

solutions 𝑚 ≠ 0 can be expected in the Hubbard model. This is worked out in Figure 4. 

 

 
Figure 3: Magnetization 𝑚 of a ferromagnetic metal as a function of  𝑘𝐵 𝑇 at fixed particle number 𝑛. 

 

Note that for all band occupations 𝑛 there is always a paramagnetic solution 

𝑛↑ =  𝑛↓ =  
1

2
  𝑛 

Additionally for particle numbers 𝑛 > 0.5 ( half- filled band)  there is also a ferromagnetic solution with 

𝑚 = 𝑛 describing ferromagnetic saturation and similar findings are also reported for example in 

reference [18]. For small band occupations 𝑛 a ferromagnetic solution is not possible as µ lies within 

the band and a solution is only obtained if 𝑛↑ =  𝑛↓. This is consistent with the exact results of Kanamori 

[8]. 

 

Proceedings of SAIP2015

SA Institute of Physics ISBN: 978-0-620-70714-5 106



 
Figure 4: Magnetization 𝑚 as a function of particle number 𝑛 at fixed temperature 𝑇 = 0. 

 

The Curie temperature 𝑇𝐶 depends on the strength of the ferromagnetic coupling which is reflected in 

the result 

𝑘𝐵  𝑇𝐶 =    
𝑊

4   tanh−1(𝑊
𝑈⁄ )

                                                                                                                  (13) 

In the strong coupling limit Eq (13)  then reduces to Eq (11) meaning 𝑘𝐵  𝑇𝐶    ~ 𝑈. A similar increase 

of 𝑇𝐶 with 𝑈 has also been obtained by other authors and qualitatively agrees with experimental results 

[19]. 

5.  Conclusions 

In this work collective electronic excitations in ferromagnetic metals (Fe, Co, Ni) are investigated. Using 

the Hubbard model as a theoretical description the exchange splitting between the ↑ and ↓ density of 

states is calculated within an RPA-approximation from the tensor of the magnetic susceptibility. A 

numerical evaluation of the magnetization 𝑚 ( 𝑇, 𝑛) shows that our model calculation describes the 

phase transition ferromagnetism ↔ paramagnetism reasonably well. Ferromagnetic solutions are only 

obtained for band fillings 𝑛 > 0.5 describing a half-filled band. The Curie temperature 𝑇𝐶  comes out 

surprisingly accurate, and its dependence on the intraatomic Coulomb interaction 𝑈  qualitatively agrees 

with experimental results. 
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