Non-universality of a constrained period doubling route to chaos for Rössler’s system

Craig Thompson, Wynand Dednam, André E. Botha

Department of Physics, University of South Africa
Edward Lorenz

\[\begin{align*}
\dot{x} &= a(y - x) \\
\dot{y} &= x(b - z) - y \\
\dot{z} &= xz - bz
\end{align*} \]

Rayleigh-Bernard Convection

\[a = 16, b = 45.92, c = 4 \]

E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)
Guoyuan Qi

\[\dot{x} = a(y - x) + eyz \]
\[\dot{y} = cx + dy - xz \]
\[\dot{z} = -bz + xy \]

\[a = 14, b = 43, c = -1, d = 16, e = 4 \]

G. Qi et al., Chaos Solit. Fract. 38, 705 (2008)
\[
\begin{align*}
\dot{x} &= -y - z \\
\dot{y} &= x + ay \\
\dot{z} &= b + z(x - c)
\end{align*}
\]

\[a = b = 0.2, c = 5.7\]

Period doubling
Period Doubling Bifurcations

$x = 0$

\[y \]

\[c \]

\[C_1 \]

\[C_2 \]

\[C_3 \]
Universality of period doubling

\[\delta = \lim_{n \to \infty} \frac{c_n - c_{n-1}}{c_{n+1} - c_n} = 4.6692 \]

\[\alpha = \lim_{n \to \infty} \frac{d_n}{d_{n+1}} = 2.5029 \]

Sequence of periodic windows: 6,5,3, ...
$x = 0, c = 5.7$
$a = b = 0.2$
Previous work

Optimization method for finding periodic orbits:
W. Dednam and A.E. Botha, Engineering with Comp. 31, 126 (2015)

Conjecture:
For any initial condition \((x_0, y_0, z_0)\) there exists real non-zero parameters defining a Rössler system for which the solution through \((x_0, y_0, z_0)\) is periodic.

Shadowing

True trajectory

Numerical trajectory

True trajectory from x'_0

Computer Assisted ‘Proof’

<table>
<thead>
<tr>
<th>n</th>
<th>a</th>
<th>x'_0</th>
<th>y'_0</th>
<th>z'_0</th>
<th>T</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-0.322</td>
<td>0.283</td>
<td>-0.827</td>
<td>6.285</td>
<td>-0.01832876699</td>
<td>-37.861974659</td>
<td>45.448602039</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.083</td>
<td>0.498</td>
<td>0.756</td>
<td>6.282</td>
<td>0.01659280123</td>
<td>34.3119795334</td>
<td>45.496814976</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.271</td>
<td>-0.033</td>
<td>-0.492</td>
<td>6.284</td>
<td>-0.01074867143</td>
<td>-22.256338664</td>
<td>45.495734090</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-0.843</td>
<td>-0.154</td>
<td>-0.338</td>
<td>6.283</td>
<td>-0.00756927443</td>
<td>-15.661740755</td>
<td>45.483293583</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.920</td>
<td>-0.101</td>
<td>-0.062</td>
<td>6.285</td>
<td>-0.00133598606</td>
<td>-2.7619826425</td>
<td>45.463987246</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.274</td>
<td>-0.843</td>
<td>-0.019</td>
<td>6.280</td>
<td>-0.00346652925</td>
<td>-9.6387456311</td>
<td>53.299901841</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>-0.431</td>
<td>0.429</td>
<td>-0.132</td>
<td>6.287</td>
<td>-0.02714795455</td>
<td>-75.519091787</td>
<td>52.954713982</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>-0.762</td>
<td>0.094</td>
<td>-0.023</td>
<td>6.283</td>
<td>-0.00504377136</td>
<td>-13.929997631</td>
<td>52.959008822</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.721</td>
<td>0.212</td>
<td>0.532</td>
<td>6.303</td>
<td>0.00958831072</td>
<td>242.356061832</td>
<td>52.926271854</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.212</td>
<td>-0.008</td>
<td>-0.946</td>
<td>6.412</td>
<td>-0.18855060455</td>
<td>-483.78516338</td>
<td>53.074125658</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>0.370</td>
<td>0.525</td>
<td>-0.489</td>
<td>9.221</td>
<td>-0.72151348243</td>
<td>-2913.5197570</td>
<td>96.641076651</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>0.465</td>
<td>-0.177</td>
<td>0.111</td>
<td>6.506</td>
<td>0.27456932042</td>
<td>1.25094211568</td>
<td>35.351207642</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
<td>0.045</td>
<td>-0.881</td>
<td>0.206</td>
<td>1.670</td>
<td>0.28422944418</td>
<td>0.06378881294</td>
<td>25.148204118</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>0.448</td>
<td>-0.071</td>
<td>0.533</td>
<td>7.016</td>
<td>0.41997047657</td>
<td>5480.91338691</td>
<td>148.08093025</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>0.177</td>
<td>-0.786</td>
<td>0.321</td>
<td>3.795</td>
<td>0.35076508274</td>
<td>0.24268923009</td>
<td>27.447807055</td>
</tr>
</tbody>
</table>
Difficult case

\[
\begin{align*}
\dot{x} &= -y - z \\
\dot{y} &= x + ay \\
\dot{z} &= b + z(x - c)
\end{align*}
\]

Consider the case when \(x_0\) is large and negative, and \(y_0 = -z_0\), with \(z_0\) large and positive.

\[
z(t) = \frac{b}{c - x} + \left(z_0 - \frac{b}{c - x} \right) e^{-(c-x)t}
\]
Impossible case?
\[x = -0.431 \]
\[y = 0.429 \]
\[z = 0.533 \]
Clustering
Conclusions and questions

• Hypothesis of the possible global existence of periodic orbits has prompted several new questions about a different kind of period doubling route to chaos and clustering in the parameter space.

• Pointed out a different course of possible investigation: is there still universality in period doubling routes to chaos which have always one point in common?

• What kind of bifurcations occur in this case?