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Abstract. The evolution equations of the Yukawa couplings and quark mixings are performed
for the one-loop renormalisation group equations in six-dimensional models compactified in
different possible ways to yield standard four space-time dimensions. Different possibilities for
the matter fields are discussed, that is where they are in the bulk or localised to the brane.
These two possibilities give rise to quite similar behaviours when studying the evolution of the
Yukawa couplings and mass ratios. We find that for both scenarios, valid up to the unification
scale, significant corrections are observed.

1. Introduction

A theory of fermion masses and the associated mixing angles is unexplained in the Standard
Model (SM) providing an interesting puzzle and a likely window to physics beyond the SM. In
the SM one of the main issues is to understand the origin of quark and lepton masses, or the
apparent hierarchy of family masses and quark mixing angles. Perhaps if we understood this we
would also know the origins of CP violation. A clear feature of the fermion mass spectrum is
[1, 2]

mu ≪ mc ≪ mt , md ≪ ms ≪ mb , me ≪ mµ ≪ mτ . (1)

Apart from the discovery of the Higgs boson at the Large Hadron Collider (LHC), another
important goal of the LHC is to explore the new physics that may be present at the TeV scale.
Among these models those with extra spatial dimensions offer many possibilities for model
building and TeV scale physics scenarios which can be constrained or explored. As such, there
have been many efforts to understand the fermion mass hierarchies and their mixings by utilizing
the Renormalization Group Equations (RGEs) especially for Universal Extra Dimension (UED)
models and their possible extensions (see [3, 4, 5] and references therein).

In these UED models each SM field is accompanied by a tower of massive states, the Kaluza-
Klein (KK) particles. An extension of this scenario is to consider a type of model with two
extra dimensions. This extension is non-trivial and brings further insight to extra-dimensional
scenarios. It is theoretically motivated by specific requirements, such as, they provide a dark
matter candidate, suppress the proton decay rate, as well as anomaly cancellations from the
number of fermion generations being a multiple of three [6]. Different models with two extra
dimensions have been proposed, such as T 2/Z2 [5], the chiral square T 2/Z4 [7], T 2/(Z2 × Z ′

2
)

[8], S2/Z2 [9], the flat real projective plane RP 2 [10], the real projective plane starting from the
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sphere [11]. For simplicity, in this paper we assume that the two extra space-like dimensions
have the same size, that is R5 = R6 = R. However, this simpler case provides the opportunity
to compute in detail the RGEs and study the evolution of mass ratios, the renormalisation
invariance R13 and R23, and sinβ.

The four-dimensional chiral zero modes of the SM fermion are obtained by imposing a discrete
Z2 symmetry, this eliminates one 4-dimensional (4D) degree of freedom and allows us to have
a 4D chiral fermion [7]. However, this can also be obtained directly from the properties of the
orbifold, as in [10]. Higher massive modes are then vector-like fermions. Each of the gauge
fields have six components and decompose into towers of 4D spin-1 fields and two towers of real
scalars belonging to the adjoint representation [12].

The one-loop correction to the gauge couplings are given by

16π2
dgi
dt

= bSMi g3i + π
(

S(t)2 − 1
)

b6Di g3i , (2)

where i = 1, 2, 3, t = ln( µ
MZ

), S(t) = etMZR is the summation of all KK excited states, µ being

the energy, that is, for the evolution between MZ < µ < Λ (Λ is the cut-off scale, where we have
set MZ as the renormalisation point). More details about the calculation of the S2(t) factor can
be found in [12, 13]. The numerical coefficients appearing in equation (2) are given by:

bSMi =

[

41

10
,−

19

6
,−7

]

, (3)

and

b6Di =

[

1

10
,−

13

2
,−10

]

+

[

8

3
,
8

3
,
8

3

]

η , (4)

η being the number of generations of fermions propagating in the bulk. Therefore, in the two
cases we shall consider: that of all fields propagating in the bulk, η = 3; and for all matter fields
localized to the brane η = 0.
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Figure 1. (Colour online) Gauge couplings g1 (red), g2 (blue), g3 (green) with: in the left panel,
all matter fields in the bulk; and the right panel for all matter fields on the brane; for three
different values of the compactification scales (R−1 = 1 TeV (solid line), 2 TeV (dot-dashed
line), and 10 TeV (dashed line)) as a function of the scale parameter t.

The evolution of the Yukawa couplings were derived in [12, 13], where the one-loop RGEs in
the 2UED we study are:

16π2
dYi
dt

= π
(

S(t)2 − 1
)

Yi [Ti −Gi + T ] , (5)
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Table 1. The terms present in the various Yukawa evolution equations, see equation (5).

Scenarios Gu Gd Ge Tu = −Td Te

Bulk 5

6
g2
1
+ 3

2
g2
2
+ 32

3
g2
3

1

30
g2
1
+ 3

2
g2
2
+ 32

3
g2
3

27

30
g2
1
+ 3

2
g2
2

3(Y †

d Yd − Y †
uYu) 3Y †

e Ye

Brane 4(17
20
g2
1
+ 9

4
g2
2
+ 8g2

3
) 4(1

4
g2
1
+ 9

4
g2
2
+ 8g2

3
) 4(9

4
g2
1
+ 9

4
g2
2
) 6(Y †

d Yd − Y †
uYu) 6Y †

e Ye

where i = u, d, e , T = 2(3Tr(Y †

d Yd) + 3Tr(Y †
uYu) + Tr(Y †

e Ye)) and the values of Gi and Ti are
given in table 1. That is, when the energy scale µ > 1

R
or when the energy scale parameter

t > ln( 1

MZR
), we shall use equation.(5), however, when the energy scale MZ < µ < 1

R
, the

Yukawa evolution equations are dictated by the usual SM ones, see [12, 13, 14].
Yukawa coupling matrices can be diagonalised by using two unitary matrices U and V , where

UY †
uYuU

† = diag(f2

u , f
2

c , f
2

t ); V Y †

d YdV
† = diag(h2d, h

2

s, h
2

b).

The CKM matrix appears as a result (upon this diagonalisation of quark mass matrices) of
VCKM = UV †. The variation of the CKM matrix and its evolution equation for all matter fields
in the bulk is [15, 16]:

16π2
dViα

dt
= −6(π(S2

− 1) + 1)





∑

β,j 6=i

f2

i + f2

j

f2

i − f2

j

h2βViβV
∗
jβVjα +

∑

j,β 6=α

h2α + h2β
h2α − h2β

f2

j V
∗
jβVjαViβ



 . (6)

For all matter fields on the brane, the CKM evolution is the same as equation (6) but multiplied
by 2.

The mixing matrix VCKM satisfies the unitarity condition, providing the following constraint

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (7)

that is, we have a triangle in the complex plane and the three inner angles α, β and γ are given
by

sinβ =
J

|Vtd||V
∗
tb||Vcd||V

∗
cb|

, sin γ =
J

|Vud||V
∗
ub||Vcd||V

∗
cb|

, (8)

with α = π − β − γ. The shape of the unitarity triangle can be used as a tool to explore new
symmetries or other interesting properties that give a deeper insight into the physical content
of new physics models.

On the other hand, in the quark sector both the mass ratios are related to mixing angles as

θ13 ∼
md

mb

, θ23 ∼
ms

mb

. (9)

In [2, 17] a set of renormalisation invariants is constructed

R13 = sin(2θ13) sinh

[

ln
mb

md

]

∼ constant, R23 = sin(2θ23) sinh

[

ln
mb

ms

]

∼ constant. (10)
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2. Results

For our numerical calculations we set the compatification radii to be R−1 = 1 TeV, 2 TeV and
10 TeV. Only some selected plots will be shown and we will comment on the other similar cases
not explicitly presented. We quantitatively anlayse these quantities in 2UED models, though
we observed similar behaviours for all values of R−1. The initial values we shall adopt at the
MZ scale can be found in [18].
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Figure 2. (Colour online) Evolution of the mass ratio mu

mc
with: in the left panel all matter

fields in the bulk; and the right panel for all matter fields on the brane. Three different values of
the compactification radius have been used R−1 = 1 TeV (solid line), 2 TeV (dot-dashed line),
and 10 TeV (dashed line), all as a function of the scale parameter t.
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Figure 3. (Colour online) Evolution of the mass ratio mb

mτ
, with the same notations as Fig.2

3. Discussions and Conclusions

As illustrated in figures 1 2, 3, the gauge couplings and mass ratios evolve in the usual logarithmic
fashion when the energies are below 1 TeV, 2 TeV and 10 TeV respectively. However, once
the first KK threshold is reached the contributions from the KK states become increasingly
significant and the effective 4D SM couplings begin to deviate from their normal trajectories.
One finds that the running behaviours of the mass ratios are governed by the combination of
the third family Yukawa couplings and the CKM matrix elements. This implies that the mass
ratios of the first two light generations have a slowed evolution well before the unification scale.
Beyond that point, their evolution diverges due to the faster running of the gauge couplings,
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Figure 4. (Colour online) Evolution of the R13, with the same notations as Fig.2
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Figure 5. (Colour online) Evolution of sinβ, with the same notations as Fig.2

where any new physics would then come into play, and we find the scaling dependence of md

ms

and me

mµ
is very slow.

On the other hand, Grand Unification Theories (such as SU(5) and SO(10)) imply the well-
known quark-lepton symmetric relation for fermion masses md = me. Due to power law running
of the Yukawa couplings, the renormalisation effects on these relations can be large for mb

mτ
, for

both scenarios, see figure 3. We have shown by numerical analysis of the one-loop calculation
that the mass ratio mb

mτ
, as one crosses the KK threshold at µ = R−1 for both scenarios, results

in a rapid approach to a singularity before the unification scale is reached, which agrees with
what is observed in the SM, however, the mass ratios decrease at a much faster rate. Note that
we observed similar behaviour for md

me
and ms

mµ
.

Let us now focus on the evolution of the set of renormalisation invariants R13 and R23 that
describe the correlation between the mixing angles and mass ratios to a good approximation.
With a variation of the order of λ4 and λ5 under energy scaling respectively, as shown in figure 4,
the energy scale dependence is weak because the increase of the mixing angles are compensated
by the deviation of the mass ratios. Therefore the effect is not large.

In figure 5 we present the evolution of the inner angle from the electroweak scale to the
unification scale by using the one-loop RGE for the 2UED model, and demonstrate that the angle
has a small variation against radiative corrections. To be more precise, the relative deviation for
sinβ is only up to 0.05% in the whole range studied. Similar analysis can also be found for the
angles α and γ. This result makes sense, since both the triangle’s sides and area become larger
and larger when the energy scale increases, the unitarity triangle (UT) is only rescaled and its
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shape does not change much during the RG evolution. The fact that inner angles are rather
stable against radiative corrections indicates that it is not possible to construct an asymptotic
model with some simple, special form of the CKMmatrix from this simple scenario. The stability
against radiative corrections suggests that the shape of the UT is almost unchanged from RGE
effects. In this regards, the UT is not a sensitive test of this model in current and upcoming
experiments.

In conclusion, the mass ratios in the 2UED model, with different possibilities for the matter
fields, were discussed, where they are either bulk propagating or localised to the brane. We found
that the 2UED model has substantial effects on the scaling of fermion masses for both cases,
including both quark and lepton sectors. We quantitatively analysed these quantities for R−1

= 1 TeV, 2 TeV and 10 TeV, observing similar behaviours for all values of the compactification
radius. We have shown that the scale dependence is not logarithmic, it shows a power law
behaviour. We also found that for both scenarios the theory is valid up to the unification scale,
leading to significant RG corrections.
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