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Abstract. Thermal analysis and solution of heat problems most often utilizes known thermal
conductivity material data which is typically experimentally determined from heat flux
measurements through the application of Fourier’s law. The challenge posed by this approach
is the need for known thermal conductivity reference materials which may be inhomogeneous
and have large associated uncertainties in industrial physics applications. In this paper we
investigate the feasibility of developing a thermal conductivity measurement system that utilizes
known radiometric input sources and temperature output measurements which may have smaller
relative uncertainties by formulating the system as an inverse heat conduction problem utilizing
recently reported research results from the fields of geophysics and mathematical optimization.

1. Introduction
Thermal physics analysis and solution of heat problems often utilizes known thermal conductivity
material data which is typically experimentally determined from heat flux measurements through
the application of Fourier’s law q′′ = −k∇T , where q′′/[W m−2] is the heat flux, k/[W m−1 K−1]
is the thermal conductivity, and T/[K] is the absolute temperature following the nomenclature
in [1]. The use of Fourier’s law presents a straight forward mechanism to define and infer the
thermal conductivity through the ratio of the heat flux measured using standard techniques
as discussed in [2], and the temperature gradient for a specified direction of heat flow where
the unknown thermal conductivity may be expressed in terms of known reference quantities
such as thermal conductivity, wall thickness and wall temperature amongst other experimental
measurements for homogeneous isotropic materials as illustrated in figure 1.

Unfortunately materials such as aluminium/steel thermal properties may be inhomogeneous
and/or non-isotropic either from physical effects in the smelting process or manufacturing
effects from the fabrication of structures requiring knowledge of thermal conductivity such as
reflectors/concentrators in for example solar plants [6] where in addition the thermal conductivity
may vary with temperature [7, 8] as illustrated in figure 2 for a selection of materials.

As a result it is desirable in applied industrial research contexts to infer thermal conductivity
information directly by an inverse problem formulation using direct temperature measurements
which are more practical and experimentally convenient, either when reference thermal
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Figure 1. Composite wall system modelled
as a 1D thermal circuit. In this model the
unknown thermal conductivity k2 is expressed
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Figure 2. Illustration of thermal conductivity temperature dependence for selection of
industrial/engineering materials (Graphic source: [1, page 47])

conductivity materials are unavailable for prior testing, impractical due to prevailing operating
conditions, or when in situ process or condition monitoring measurements are necessary.

In general accurate heat sources such as calibrated lasers or electrical resistance heating
elements, and temperature measurement devices such as thermocouples or resistance
thermometers, are simple and straightforward to procure and utilize. As a result in this paper
we opt to analyze a system in which the thermal conductivity may be inferred through an Inverse
Heat Conduction Problem (IHCP) modelling approach utilizing just radiometric/electrical
heating sources and temperature measurements which are easily accessible and which avoids
the need for specific reference thermal conductivity material components, and specialist heat
flux instruments and blackbody equipment [9].

2. Literature Review
Within the statistical literature simulation problems may typically be classified as either
direct/forward or indirect/inverse where in general terms the former are cases in which PDE
parameters are known and one utilizes this information to solve for the PDE solution, whilst in
the latter one utilizes the PDE solution to infer the underlying PDE parameters.

In the context of thermal physics a direct/forward problem would correspond to using known
thermophysical properties such as thermal conductivity and/or specific heat capacity as inputs
with suitable boundary conditions for a boundary Γ = ∂Ω to solve the heat diffusion equation
∇ · (k∇T ) + q̇ = ρcp

∂T
∂t for some problem domain Ω whilst an indirect/inverse problem would

in a certain sense “work backwards” to use the PDE temperature field solution to infer the
corresponding thermophysical parameters as discussed in [10]. Traditionally inverse problem
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studies have been common in the geophysical sciences to determine rock densities, gravitional
field strengths, and in oil and gas exploration as discussed in [11, 12, 13] with newer insights into
Monte Carlo based inverse parameter uncertainties reported in [14], and which has generally been
formulated and solved using the Monte Carlo and Levenberg-Marquardt techniques as outlined
in [15, 14].

For IHCP studies methods of solution have mainly to date traditionally consisted of the
Levenberg-Marquardt and conjugate gradient techniques for mixtures of problems in laboratory
thermophysical testing and space vehicle atmospheric reentry design and research studies after
the development of techniques such as Tikhonov regularization which were able to modify and
reformulate the original ill-posed/unstable inverse problems as approximate well-posed problems.

More recently investigations in inverse theory problems across different fields has involved
applications of newly developed techniques such as the variational iteration method or (VIM)
[16], the method of fundamental solutions or MFS [17, 18, 19, 20, 21, 22, 23, 24, 25], the lattice
Boltzmann method or LBM [26], heuristic approaches drawing from a mixture of techniques
[27, 28], and meshfree approaches [29]. Finite difference methods for IHCP studies are further
discussed in [30, 31] who explore how the Tikhonov regularization method may be used to
regularize the ill-conditioned linear system of equations for a non-steady two dimensional heat
conduction problem, and a iteration approach to determine the regularization parameter was
explored in [32]. A measurement methodology for infrared thermography of inverse models that
used a maximum entropy principle was reported in [33] for a die forging application in order to
deduce the unknown boundary condition of a heat flux using a finite difference discritization.

3. Mathematical Development
Based on the literature review we opt for simplicity since the underlying problem is nonlinear to
use a Levenberg-Marquardt optimization in our formulation to avoid a Tikhonov regularization.
Utilizing the heat diffusion equation ∇ · (k∇T ) + q̇ = ρcp

∂T
∂t which reduces to a generalized

two dimensional Poisson equation ∂
∂x(k ∂T∂x ) + ∂

∂y (k ∂T∂y ) = −q̇ in the special case for steady-state
conditions for a planar domain for the particular geometry of the experimental system illustrated
in figure 2 where the domain Ω is a circular region of diameter D where the boundary Γ is held
at a constant temperature Tf , where T/[K] is the temperature, k/[W m−1 K−1] the thermal
conductivity of the sample, and q̇ is an energy sink/source term which is positive if energy is
generated within the medium and negative if energy is being consumed.
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unknown k(x, y) Figure 3. Experimental inverse heat
conduction problem (IHCP) system to test for
thermal conductivity

Adopting a radial basis function discretization following the discussions in [34, 35, 29] we

approximate the thermal conductivity as k =
∑Nk

i=1 αiϕk(||x − xi||, and the temperature field

as T =
∑NT

j=1 βjϕT (||x − xj ||. For the temperature field let NT be the total number of points
composed of NI interior points and NB boundary points such that NT = NI + NB. In this
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approach it is not necessarily the case that Nk = NT however this will simplify subsequent
calculations. The terms αi (i = 1, . . . , N) and βj (j = 1, . . . , N) are coefficients that are used
to build up the k(x) and T (x) fields for x ∈ Ω in terms of the RBF’s ϕk and ϕT respectively.

Utilizing Gaussian RBF’s for simplicity to illustrate the approach adopted of form ϕk = e−ε
2
kr

2

and ϕT = e−ε
2
T r

2
where r =

√
(x− xi)2 + (y − yi)2 and where εk and εT are suitable shape

parameters for the thermal conductivity and temperature fields respectively, and substituting
into the generalized two dimensional Poisson equation we then have using the short hand ri = r

for points in the interior that 0 = ∂k
∂x

∂T
∂x + k ∂

2T
∂x2

+ ∂k
∂y

∂T
∂y + k ∂

2T
∂y2

+ q̇ where k =
∑Nk

i=1[αie
−ε2kr

2
i ],

∂k
∂x =

∑Nk
i=1[−2ε2k(x − xi)αie−ε

2
kr

2
i ], ∂2k

∂x2
=
∑Nk

i=1[−2ε2kαi{1 − 2ε2k(x − xi)2}e−ε
2
kr

2
i ], and similar

expressions for the corresponding temperature field.
Let Tk be the experimental measured temperature and θk the estimated temperature for

some choice of assumed parameter P , where in our particular problem the parameter is used to
specify the thermal conductivity. Constructing an objective function S(P ) =

∑N
k=1[Tk−θk(P )]2

it follows that we solve the IHCP by determining the choice of parameter such that S(P ) is
minimized. The objective function may be written in matrix form by specifying the measured
and estimated temperatures as a column vectors T T = [T1, . . . , TN ] and θT = [θ1, . . . , θN ] and
then constructing the objective function as S(P ) = [T − θ(P )]T [T − θ(P )]. A solution will
occur when ∇S(P ) = 0 which after algebraic manipulations reduces to the following equations

−2JT(P )[T − θ(P )] = 0

J =


∂θ1
∂P1

∂θ1
∂P2

∂θ1
∂P3

· · · ∂θ1
∂PM

∂θ2
∂P1

∂θ2
∂P2

∂θ2
∂P3

· · · ∂θ2
∂PM

...
...

...
...

...
∂θN
∂P1

∂θN
∂P2

∂θN
∂P3

· · · ∂θN
∂PM


where as previously mentioned N is the total number of measured/estimated temperatures,

M is specified as the total number of parameters such that P T = [P1, . . . , PM ], and J(P ) =

[∂θ
T(P )
∂P ]T is the corresponding Jacobian matrix of the objective function system. For linear

problems the unknown parameter to be determined may be calculated as P = (JTJ)−1JTT
however for a nonlinear inverse problem it may be observed that the Jacobian matrix, also known
as the sensitivity matrix, has a functional dependence on the parameter P and as a result must
be solved iteratively using a local linearization. In order for a suitable iteration procedure to
converge it is necessary that |JTJ| 6= 0 otherwise the IHCP is ill-conditioned. Whilst Tikhonov
regularization is possible to solve a resultant ill-conditioned linear system Λθ = B of form
θα = [ΛTΛ + α(R(s))T]−1ΛTB where R(s) for s = 0, 1, 2 is a Tikhonov regularization matrix
following the overview presented in [31] where α is the regularization parameter.

Different approaches are possible for estimating α and whilst there is no definitive method
the L-curve method appears common within the mathematical literature but is difficult to
implement. To avoid these difficulties we opt to use the Levenberg-Marquardt method which is
also amenable for potentially ill-conditioned systems and which has the advantage of being well
established with existing implementations [36] that are relatively straightforward to implement
and which incorporate newer mathematical optimization techniques such as the homotopy
approach [37].

Based on our RBF discritization set Nk = NT to simplify the algebra when constructing
the corresponding Jacobian matrix and note that our approach then specifies the parameters
as P T = [α1, . . . , αM ] and the estimated temperature field as θ(P ) as the solution of the
generalized Poisson equation as previously indicated. The algorithm to implement the IHCP
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formulated thermal conductivity measurement technique may now be conveniently summarized
as follows:

(i) specify the spatial coordinates (xi, yi) for the points in the interior Ω and for the points
(xb, yb) on the boundary Γ

(ii) assign the associated measured interior temperatures as Ti along with associated heat
source/sink terms q̇i taking note of the known boundary temperatures Tf (xb, yb)

(iii) construct the Jacobian matrix J either symbolically/numerically using the assumed values
from the RBF parameterization

(iv) solve the nonlinear inverse problem using the Levenberg-Marquardt method for the given
measured temperature data and assumed parameter values and iterate until convergence to
the required accuracy level is achieved

(v) the associated parameter uncertainties u(αi) (i = 1, . . . ,M) in the RBF formulation of
the thermal conductivity field may be constructed from Monte Carlo simulations and
statistical post-processing of the results using simulation inputs obtained by sampling from
the measured temperature values and their associated reported uncertainties

(vi) the parameter uncertainties may then be used as inputs in a GUM/GS1 uncertainty
quantification calculation for the thermal conductivity uncertainty at any particular spatial
coordinate within the domain

4. Discussion
In this paper we have investigated how to use an IHCP formulation as a means to determine
thermal conductivity values for materials from experimental temperature measurements and
numerical simulations. Potential benefits of the method that have been investigated are that
there is no need for specialist laboratory reference thermal conductivity material standards, the
method can be applied in industrial/plant environments with standard equipment/instruments
with minimal physical complexity, and that the numerical algorithm to implement the method
may be utilized to accurately relate and estimate the thermal conductivity uncertainties in terms
of the input experimental data.
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