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Abstract. We consider a circuit consisting of two distant nitrogen-vacancy-center ensembles
coupled to separate transmission line resonators, which interact by means of a current biased
Josephson junction. Our investigation is focused on transitions and dissipation in the Josephson
junction leading to entanglement. In our approach the Josephson junction is regarded as a
reservoir, whose variables are eliminated from the system dynamics. We include in this scheme
also superconducting quantum interference devices, flux-driven Josephson parametric amplifiers,
which are the sources of a squeezed microwave field. The entanglement was studied in terms
of the logarithmic negativity. The logarithmic negativity was considered for different regimes:
weak coupling and strong coupling of transitions of the Josephson junction, and under action of
squeezed microwave fields. We show that different degrees, time and duration of entanglement
can be reached for various parameters choices.

1. Introduction

We propose a new approach for the physical realization of thermal entanglement of a continuous
variables system using spin ensembles. Nitrogen vacancy (NV) centers in diamond attract
especial interest because the manipulation, storage, and readout of the quantum information
encoded in the different sublevels can be implemented by means of laser and microwave fields
[1, 2, 3, 4, 5]. Experimental confirmation of these properties led to engineering of various
hybrid circuits, containing nitrogen-vacancy-center ensembles (NVEs), separate transmission
line resonators (TRLs) and current biased Josephson junction (CBJJ) [6, 7, 8, 9, 10]. Application
of NVE with N spins allows enhancement of the coupling strength by a factor

√

N , that
is especially important for performing of measurement-based quantum computing. For the
description of interaction of spin ensembles with external fields collective variables are used.
In the low-excitation limit, collective variables of NVE can be described as bosonic modes or
harmonic oscillators.

Recently, conditions of squeezing were investigated in the system of two distant NVEs coupled
to separate TLRs, which are interconnected by a CBJJ [11]. Our investigation is focused on two-
mode thermal entanglement, which can occur due to transitions and dissipation in the CBJJ and
TLRs. Also we include in the scheme superconducting quantum interference devices, flux-driven
Josephson parametric amplifiers (JPAs), which are the sources of a squeezed microwave field.
Recently JPA was described theoretically [12] and also realized experimentally [13]. Squeezed
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Figure 1. The coupled system of a current biased Josephson junction (CBJJ), two transmission
line resonators (TLRs) and Josephson parametric amplifiers (JPAs). Current biased Josephson
junction interconnects transmission line resonator a (TLR a) and transmission line resonator b
(TLR b) by means of coupling capacitors Cc. Ib is bias current. CJ is the junction capacitor.
Josephson parametric amplifiers enhance scheme on left and right sides via coupling capacitors
C0 . Nitrogen-vacancy-center ensemble 1 (NVE 1) and nitrogen-vacancy-center ensemble 2 (NVE
2) are shown inside transmission line resonator a and transmission line resonator b.

microwave field of JPA provides self-squeezing of each bosonic mode in separate TLR that
can be important for applications of the continuous-variables approach. Logarithmic negativity
was chosen as a measure of entanglement because the continuous-variables approach provides a
simple way to find the covariance matrix, which is the basis for the calculation of the logarithmic
negativity. In Section 2 we present the scheme, including NVEs, TLRs, CBJJ and JPA, and the
model, which is proposed for the description of the interaction. In the section 3 we illustrate the
results obtained for the entanglement investigation by means of a calculation of the logarithmic
negativity for various parameters. In conclusion, we formulate the necessary conditions for the
formation of entangled steady state.

2. Model description

We consider a circuit consisting of two distant nitrogen-vacancy-center ensembles coupled to
separate transmission line resonators, which interact by means of a current biased Josephson
junction, enhanced by JPAs symmetrically in both parts of system (figure 1).

Action of different types of fields, such as fields of two resonators, squeezed microwave field,
classical microwave fields and constant magnetic field, is considered for the description of the
dynamics of the scheme. A constant magnetic field removes the degeneracy between the levels of
spin states, and induces energy splitting (figure 2). The experimental results [14] show that the
resonant frequencies can be approximately equal for all NV centers under particular conditions.
Sublevels of each NV center in the both ensembles are coupled by a corresponding mode of TLR
with vacuum Rabi frequency ga and gb respectively. Simultaneously, NV centers of each ensemble
are driven by two classical microwave fields, where Ω1 and Ω2 are their Rabi frequencies. In the
scheme the logic states 0 and 1 are denoted by corresponding levels: |0〉 and |1〉, respectively.
Due to the large detuning the coupling is considered perturbatively, using the second-order
perturbation theory. The ground state is eliminated from the system dynamics. The interaction
of the NV with two fields in such a system can be described by the corresponding Hamiltonian,
where h̄ = 1

HI =

N1
∑

j=1

[
Ω2
1

4∆1
|1〉j1,

j
1〈1|+

g2a
∆1

a† a|0〉j1,
j
1〈0|+

(

Ω1gaa
†

2∆1
|0〉j1,

j
1〈1|+H.c.

)

]

+

N2
∑

j=1

[
Ω2
2

4∆2
|1〉j2,

j
2〈1|+

g2b
∆2

b† b|0〉j2,
j
2〈0| +

(

Ω2gbb
†

2∆2
|0〉j2,

j
2〈1| +H.c.

)

], (1)
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Figure 2. Level structure of single a NV center under the action of an external magnetic field.

where N1, N2 are the number of NV centers in the corresponding NVE. We use the collective
spin operators [11] for each of two NVE (i = 1, 2 denotes ensemble)

S−
i =

Ni
∑

j=1

|0〉ji,
j
i 〈1|, S+

i =

Ni
∑

j=1

|1〉ji,
j
i 〈0|,

and map them into the boson operators ci(c
†

i ) by means of the Holstein-Primakoff transformation

S−
i = ci

√

N − c†i ci =
√

Nici,

S+
i = c†i

√

N − c†i ci =
√

Nic
†

i , (2)

Sz
i =

(

c†i ci −
Ni

2

)

.

The effective Hamiltonian can be obtained by neglecting the constant energy terms in HI

Heff = ˜Ω1(a
†c1 + ac†1) +

˜Ω2(b
†c2 + bc†2), (3)

where
˜Ω1 =

√

N1
Ω1ga
2∆1

, ˜Ω2 =
√

N2
Ω2gb
2∆2

.

We model the CBJJ as a two-level artificial atom, considering two lowest levels with frequency
of transition ω10 = 12GHz. Such distribution of energy levels is provided by the choice of CBJJ
parameters [15, 16, 17]. We denote these two states by |0〉CBJJ , |1〉CBJJ . So we consider the
two-level system driven by the quantized fields of TLRs, using the rotating-wave approximation.
The Hamiltonian describing the interaction of CBJJ with TLRs fields is [15]

Heff
int = g̃a(aΣ

+eiφ + a†Σ−e−iφ) + g̃b(bΣ
+eiθ + b†Σ−e−iθ), (4)

where g̃t = [2Ct(CJ +2Cc)]
−1/2ωt Cc cos δ is the coupling factor, t = a, b; δ is a small phase shift

on coupling capacitance Cc, which connects TLR and CBJJ; Σ+ = |1〉CBJJ 〈0|, Σ
− = |0〉CBJJ 〈1|

are the raising and lowering operators of the CBJJ; Σz = |1〉CBJJ 〈1|−|0〉CBJJ 〈0| is the inversion
operator of the CBJJ; φ and θ represent phases. Including the expressions for dissipation in the
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TRLs and in the CBJJ [15], we describe the transfer processes in the system by means of the
master equation

∂ρ

∂t
= −i[Heff , ρ]− i[Heff

int, ρ] + ka(aρa
†
−

1

2
a†aρ−

1

2
ρa†a) +

+kb(bρb
†
−

1

2
b†bρ−

1

2
ρb†b) +

γϕ
2
(ΣzρΣz − ρ) + (5)

+(
γ10 + Γ1

4
)(Σ−ρΣ+

−

1

2
Σ+Σ−ρ−

1

2
ρΣ+Σ−)− i[Va, ρ]− i[Vb, ρ],

where γϕ is the dephasing factor for the considered transition, γ10 is the decay factor describing
spontaneous emission, Γ1 is the quantum tunnelling rate, that represents probability of
transitions to continuum. The Γ0 is not taken into account, because it is much smaller than
other decay rates, ionization is mostly from the upper levels [17].

The terms Va = β(a†2e−iϕ + a2eiϕ), Vb = ξ(b†2e−iϕ + b2eiϕ) describe squeezed fields of JPA;
β, ξ are real amplitudes of squeezed fields, ϕ is phase of squeezed fields.

Based on the Master equation (5) set of differential equations for observables was obtained,
using two different approaches: method of decorrelations and adiabatic elimination of fast
variables of CBJJ and TLRs. Solution of this system leads to covariance matrix, which is
necessary for the calculation of the logarithmic negativity [18] and for the analysis of the
entanglement in our model.

3. Results

To analyse the entanglement between bosonic modes of two separate NVEs we use the
logarithmic negativity [18]

EN = −

2
∑

i=1

log2(min(1, |γi|)), (6)

where γi are symplectic eigenvalues of the partially transposed covariance matrix γT1 . γT1 is
obtained from the covariance matrix γ by time reversal of the momentum operator of the first
system by means of the transformation p̂1 → −p̂1

γT1 = PγP, (7)

where

P =

(

1 0
0 −1

)

⊕

(

1 0
0 1

)

.

The elements of the covariance matrix γ are calculated, using the found values of NVEs

observables
〈

c†1c1

〉

,
〈

c†2c2

〉

, 〈c1c2〉 and other. The symplectic eigenvalues γi are calculated

as the positive square roots of the usual eigenvalues of −σγT1σγT1 [18], where

σ =

(

0 1
−1 0

)

⊕

(

0 1
−1 0

)

.

If γi ≥ 1 and EN = 0, state is separable.

Figure 3 shows the dynamics of the entanglement for different values of the squeezed fields,
which act on both sides of the circuit with the same amplitude. The phase of the squeezed fields
and the phase in the term describing coupling transitions of the CBJJ are equal to zero. Thus
we consider a symmetric system with equal parameters of dissipation, pumping and coupling for
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Figure 3. Logarithmic negativity as a function of dimentionless time for g̃a = g̃b = 1MHz,
˜Ω1 = ˜Ω2 = 0.1MHz, β = ξ = 1kHz (solid line), 2 kHz (dashed line), 5 kHz (chain line), 10 kHz
(dotted line), Γ1 = 0.1MHz, γ10 = 0.2MHz, γϕ = 0.1MHz and ka = kb = 0.1MHz.

both sides of the scheme. One can see significant entanglement for various values of amplitude
of the driving field. The growth of entanglement is finalised by stabilization after the steady
state is reached. Such a steady state remains entangled. Increasing of the field amplitude leads
to growth of entanglement, and direct dependence of the degree of entanglement from the field
value is observed. But further amplification of pumping can cause loss of the stationary regime.
In such a case the steady state is not formed.

Figure 4 confirms entanglement in the considered system for a range of parameters. One can
see that the significant entanglement can be reached also for weak coupling of transitions in the
CBJJ and NV centers. In this case dissipation in the CBJJ is the driving force for intermode
entanglement. Weak coupling of transitions in the NV center causes an increase of entanglement
time. Increasing of transitions coupling in CBJJ provides growth of entanglement, and very weak
coupling induces delay in the growth of logarithmic negativity.

4. Conclusion

We investigated thermal entanglement in the system consisting of two distant nitrogen-vacancy-
center ensembles coupled to separate transmission line resonators, which interact by means of a
current biased Josephson junction. The case of equal parameters for both parts of the circuit was
chosen. It was found, that without pumping of squeezed microwave field intermode entanglement
is not observed. Entanglement in such a scheme is reached only under the action of the squeezed
field. Increasing of field of JPAs leads to growth of the logarithmic negativity, but the amplitude
of pumping must be much smaller than the decay rates for a steady state to be formed. If the
fields of JPA are weak enough, the entangled steady state is formed. Entanglement can be
observed for a large range of parameters. Values of the coupling factors for the transitions
in the CBJJ play an important role for the entanglement, the increasing leads to growth of
logarithmic negativity. But when these coupling factors are small, dissipation is a driving force,
which provides intermode entanglement. The choice of coupling factors for transitions of NV
centers allows to control the time of reaching the steady state.
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Figure 4. Logarithmic negativity as a function of dimensionless time for ˜Ω1 = ˜Ω2 = 0.1kHz,
β = ξ = 0.1kHz, g̃a = g̃b = 6kHz (solid line), 5 kHz (dotted line), 4 kHz (dashed line),
Γ1 = 0.1MHz, γ10 = 0.2MHz, γϕ = 0.1MHz and ka = kb = 1kHz.

References
[1] Childress L, Gurudev Dutt M V, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R and

Lukin M D 2006 Science 314 281.
[2] Gurudev Dutt M V, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007

Science 316 1312.
[3] Jiang L, Hodges J S, Maze J R, Maurer P, Taylor J M, Cory D G, Hemmer P R, Walsworth R L, Yacoby A,

Zibrov A S and Lukin M D 2009 Science 326 267.
[4] Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J and Jelezko F 2010 Science

329 542.
[5] Buckley B, Fuchs G D, Bassett L C, Awschalom D D 2010 Science 330 1212.
[6] Twamley J and Barrett S D 2010 Phys. Rev. B 81 241202(R).
[7] Yang W L, Yin Z Q, Hu Y, Feng M, and Du J F 2011 Phys. Rev. A 84 010301(R).
[8] Yang W L, Hu Y, Yin Z Q, Deng Z J, and Feng M 2011 Phys. Rev. A 83 022302.
[9] Xiang Z-L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623.
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