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Abstract. Under the system-environment interaction the dynamics of the open system can be
described by a set of quantum trajectories satisfying some stochastic Schrödinger equation. Such
an approach can be extended to the non-Markovian regime by replacing white noise with colored
noise. This approach is efficient for simulations with the help of the time-discrete stochastic
wave-function methods. As an illustrative example we consider the model of a dissipative qubit.
The adaptive Platen method has been derived in order to introduce the colored noise to the
iteration algorithm. Also, we test the validity of the approximation based on the Nakajima-
Zwanzig method in the stochastic sense. This method is not well studied and needs further
investigations.

1. Introduction
A first aim of the theory of open quantum systems is the description of the time evolution of a
system S (the open system) interacting with an external environment E. One of the ways to
describe the partial dynamics of such a system is to use the generalized master equation for the
reduced density matrix η(t). In this situation the simple approach is based on the absence of
memory effects of the environment and is provided by the Markov approximation. Nevertheless,
this approach is no more valid when the memory effects can not be excluded: strong coupling,
correlation, and entanglement in the initial S-E state and the system at low temperature. This
gives rise to the theory of non-Markovian quantum dynamics, for which a general theory does
not exist, but only approaches, for example [1, 2, 3].

Under the system-environment interaction the dynamics of the system can be described by
a set of quantum trajectories satisfying some stochastic Schrödinger equation. In this case, the
density matrix of the system is recovered as an average over all possible number of trajectories
of the state vector E[|ψ(t)〉〈ψ(t)|] = η(t). Such an approach can be extended to the non-
Markovian regime by replacing white noise with colored noise [3]. Specifically, the colored noise
is represented by an Ornstein-Uhlenbeck process.

We describe the numerical investigation of the dynamics of a non-Markovian dissipative qubit,
studied analytically in [3]. The stochastic simulations were done with the help of the extended
Platen method.

The results of the simulations are compared with an analytical approximation firstly presented
in [4] which is based on the Nakajima-Zwanzig projection method but conceptually is different
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due to the appearance of the stochastic terms in the non-Markovian master equation. This
method is not well studied and needs further investigations.

2. The linear SSE with colored noise and the closed stochastic master equation
In this section we will show two methods, presented recently in [3] and in [4]. Both the methods
describe the non-Markovian dynamics. One method is based on the introduction of memory
effects with the help of the colored noise and can be used for the simulations. Another method
is an analytical approach, that is based on the Nakajima-Zwanzig method utilized to get a
closed stochastic master equation. Furthermore, the simulation results will be compared with
this analytical approach.

Let us start from the method, presented in [3]. A generic homogeneous linear stochastic
differential equation for the non-normalized state φ(t) with W = {Wj(t), t ≥ 0, j = 1, . . . , d},
a continuous d-dimensional Wiener process:

dφ(t) = K(t)φ(t) dt+
d∑

j=1

Rj(t)φ(t) dBj(t), (1)

where φ(0) = ψo, ψ0 ∈ H, the coefficients Rj(t),K(t) are (non-random) linear operators on
separable, complex Hilbert space H. The normalized vector ψ(t) = φ(t)/ ‖φ(t)‖ corresponds to
the conditional state of the system given the observed output up to time t and is often called the
a posteriori state. For the case of measurement in continuous time the output is not discrete, but
it is a whole trajectory of some observed quantity; this brings into play the stochastic processes.
Apart from this complication, the linear stochastic Schrödinger equation is an evolution equation
for the non-normalized vectors φ(t).

The stochastic differential equation (1) is to be intended in integral sense and the solution φ
is the continuous, adapted Itô process [5] satisfying

φ(t) = ψ0 +

∫ t

0
K(s)φ(s) ds+

d∑
j=1

∫ t

0
Rj(s)φ(s) dWj(s).

The last term in the above equation is a stochastic Itô integral (see [5] ). The coefficient in the
drift part of (1) has the structure:

K(t) = −iH(t)− 1

2

d∑
j=1

Rj(t)
†Rj(t), (2)

where H is the effective Hamiltonian of the system.
Finally, the linear stochastic Schrödinger equation (diffusive type) [6] is given by

dφ(t) =

(
−iH(t)− 1

2

d∑
j=1

Rj(t)
†Rj(t)

)
φ(t) dt+

d∑
j=1

Rj(t)φ(t) dWj(t), (3)

φ(0) = ψ0, ψ0 ∈ H, ‖ψ0‖ = 1, H(t) = H(t)†. (4)

The extension of the Markovian approach allows to describe the random dynamics for open
quantum system with memory by introducing colored noise in the linear stochastic Schrödinger
equation. In our case the model represents a dissipative evolution with memory, but without
any observation of the quantum system.
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The colored stationary Ornstein-Uhlenbeck (O-U) process X(t) is defined by

X(t) = e−kt
Z√
2k

+

∫ t

0
e−k(t−s)dW (s), k > 0, 0 ≤ s < t < +∞, (5)

and satisfies the stochastic differential equations:

dX(t) = −kX(t)dt+ dW (t), X(0) = Z/
√

2k, (6)

where W (t) is a one-dimensional Wiener process and Z is a standard normal random variable.
We note, that Z is independent from the Wiener process. The non-Markovianity of the O-U
process follows from the fact that its correlation function is no more a δ-function (the Markovian
regime is recovered in the limit k ↓ 0):

E[Ẋ(t)Ẋ(s)] = δ(t− s)− k

2
e−k|t−s|. (7)

Let us consider a one-dimensional driving noise X(t) and three non-random operators C, D and
R on H. The starting point is the basic linear stochastic Schrödinger equation

dφ(t) =
(
A+BX(t)

)
φ(t) dt+Rφ(t) dX(t), (8)

where X(t) is the stationary O-U process. This can be rewritten by changing dX according to
its definition:

dφ(t) =
(
A+X(t)B − kX(t)R

)
φ(t) dt+Rφ(t)dW (t), (9)

and the initial condition is a wave function ψ0 ∈ H, such that ‖ψ0‖2 = 1. To perform the
normalisation condition for the probability E[‖φ(t)‖2] = 1 we need to impose two self-adjoint
operators K and H0 such that

B = −iK +
k

2

(
R+R†

)
, A = −iH0 −

1

2
R†R. (10)

As a consequence the initial Eq. (8) becomes

dφ(t) =

(
−iH(t)− 1

2
R†R

)
φ(t) dt+Rφ(t) dW (t), (11a)

H(t) := H0 +X(t)L, L := K +
ik

2

(
R† −R

)
. (11b)

Apart from the randomness introduced by the random Hamiltonian H with colored noise X(t)
we have the same situation of the linear (3).

For the case of a random unitary evolution we take B = 0 in Eq. (8), which gives also K = 0.
Moreover, the conditions (10) become

R = −iV, V † = V, A = −iH0 −
1

2
V 2.

Then, we get

L = −kV, H(t) = H0 − kX(t)V. (12)

As it was demonstrated in [7], the linear stochastic Schrödinger equation reduces to :

dφ(t) = −i

[
(H0 − kX(t)V ) dt+ V dW (t)

]
φ(t)− 1

2
V 2φ(t)dt. (13)
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The evolution of the quantum system is completely determined by the time-dependent, random
Hamiltonian H(t) of an isolated and closed system incorporating a random environment
characterized in terms of O-U process.

Sometimes, it is convenient to study the state corresponding to the statistical operator η(t)
which is the state we attribute to the system at time t, when the output is not known and this
is the second method, derived in [4]. The a priori state that corresponds to the master equation
(which is not closed) is:

η(t) = E[|ψ(t)〉〈ψ(t)|], (14)

where E corresponds to the mean value and ψ(t) = φ(t)/ ‖φ(t)‖.
Using the definition (14) and (13) the stochastic master equation is obtained. The closed

stochastic master equation has been derived by the adapting Nakajima-Zwanzig method (for
full derivation see [4, 7]):

η̇(t) ' L0[η(t)] +
k

2

∫ t

0

[
V, e(L0−k)(t−s)[[V, η(s)]

]]
ds. (15)

The methods presented above will be considered for the model of the dissipative qubit. Also,
in the next section it will be shown, how to introduce the colored noise to the simulation
algorithm.

3. The simulation
The description of open quantum systems by using stochastic wave-function methods has
recently received a great deal of attention. By using the wave function instead of the density
matrix, one can significantly speed up computer simulations as the dimension of the system
increases [8].

Let us consider the two presented methods on the concrete example, namely the dissipative
qubit. For this model we have the following parameters:

H0 =
ω0

2
σz, ω0 > 0, V =

√
γ

2
σy, γ > 0. (16)

The linear stochastic Schrödinger equation (13) then becomes:
dφ1(t) = −1

2

(γ
2

+ iω0

)
φ1(t) dt−

√
γ

2
φ2(t) dX(t),

dφ2(t) = −1

2

(γ
2
− iω0

)
φ2(t) dt+

√
γ

2
φ1(t) dX(t),

(17)

and the operator L0:

L0[σ] = − iω0

2
[σz, σ]− γ

2
[σy, [σy, σ]].

We use the Platen scheme [9] for which it will be convenient to rewrite the system (17) in
the matrix Itô form:

dφφφ = Qφφφdt+ CφφφdW, (18)

where the corresponding support matrices are:

Q =

−1/2(γ/2 + iω0)
√
γ/2kx 0

−
√
γ/2kx −1/2(γ/2− iω0) 0
0 0 −k

 , C =

 0 −
√
γ/2 0√

γ/2 0 0
0 0 1/x

 , (19)
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and the vector φφφ is

φφφ =

φ1

φ2

x

 . (20)

Here the main difference from the classical Platen scheme is the presence of an O-U process with
an extra variable x that have been added to the vector φφφ to provide an element of the colored
noise.

The Platen scheme has the form:

φφφn+1 = φφφn +
1

2
(aaa(Υ) + aaa) ∆ (21)

+
1

4

(
bbb(R+) + bbb(R−) + 2bbb

)
∆W

+
1

4

(
bbb(R+)− bbb(R−)

){
∆W 2 −∆

}
,

with corresponding:

aaa(φ) = Qφ, bbb(φ) = Cφ,

Υ = φφφn + aaa∆t+ bbb∆W, R± = φφφn + aaa∆± bbb
√

∆.

Finally, we can extrapolate the results to provide a higher order approximation of the resulting
functional. The order 4.0 weak extrapolation [5] has the form:

V ∆
g,4(T ) =

1

21

[
32E(g(Y ∆

T ))− 12E(g(Y 2∆
T )) + E(g(Y 4∆

T ))

]
,

where E denotes the mean value of the simulated function g with the time steps ∆, 2∆ and 4∆
correspondingly (for our case ∆ = 0.05).

The solutions of (15) for different values of k are shown in figure 1. One can see that the
memory effects (increasing k) slow down the decay. In figure 2 and figure 3 the analytical
approximation (15) is presented together with the simulation of (18). Each simulation was done
for 104 realisations with the help of the Platen method adapted for the presence of O-U noise,
with an additional term in (20), while the initial state was taken as:

η(0) =

(
1 0
0 0

)
. (22)

The choice of parameters for figure 2 and figure 3 has been optimized for the simplest case
of equation (15).

4. Conclusion
One of the ways to describe the dynamics of an open quantum systems is to use the stochastic
Schrödinger equations. The properties of this approach leads to effective computer simulations
with the help of stochastic wave-function methods. These methods may also be used to describe
systems with memory.

One of the strategies to describe memory effects in the system is to introduce the colored
noise. In particular, the colored O-U noise has been added to the linear stochastic Schrödinger
equation. This procedure was presented in [3] and was used to perform the simulations. To get
the correct results, we adapt the Platen algorithm, with an additional term in (20), due to the
presence of the colored noise.

Also, we have tested some approximation, derived in [4]. It is based on the Nakajima-Zwanzig
technique but in connection to the stochastic equations. The final master equation was shown
and its solution compared with the results of the simulations. The obtained curves show a good
agreement for both methods.
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Figure 1. The solutions of (15) for different
values of k: k = 0 (solid line), k = 1 (dot-
dashed line), k = 2 (dotted line).
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Figure 2. Plot of the mean occupation
number of the excited state for the parameters
γ = 1, ω0 =

√
37/2, k = 1. The solid

line comes from the analytical approximation
(15), while the dashed line and dots show the
results of the stochastic simulation of (18).
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Figure 3. Plot of the mean occupation
number of the excited state for the parameters
γ = 1, ω0 =

√
37/2, k = 2. The solid

line comes from the analytical approximation
(15), while the dashed line and dots show the
results of the stochastic simulation of (18).
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